一、算法思想
1、递归思想:
(1)要将求解的较大规模的问题分(divide)割成k个更小规模的子问题。对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归(conquer)的进行下去,直到问题规模足够小,很容易求出其解为止。
(2)将求出的小规模的问题的解合并(combine)为一个更大规模的问题的解,自底向上逐步求出原来问题的解。
2、分治思想:
将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
3、分治法的适用条件
(1)该问题的规模缩小到一定的程度就可以容易地解决
(2)该问题可以分解为若干个规模较小的相同问题
(3)利用该问题分解出的子问题的解可以合并为该问题的解
(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题(如果不是独立的,用动态规划)
4、总结:
直接或间接地调用自身的算法称为递归算法。
用函数自身给出定义的函数成为递归函数。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。
分治和递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
二、入门
1、兔子繁殖
在一年之初,把性别相反的一对新生兔子放进围栏。从第二月开始,母兔每月生出一对性别相反的小兔。每对新生兔也从它们第二个月开始每月出生一对新兔。求一年后围栏内兔子的对数。
同Fibonacci数列
考虑:第一个月:1对
第二个月:2对=原先的一对+新生的一对
第三个月:3对=原先的两对+新生的一对
第四个月:5对=原先的三对+新生的两对
我们发现第四个月新生的就是第二个月的对数,因为第二个月那个新生的不能生,故到第三个月时,第二个月的兔子都能生了
我没用递归,用的递推。。
递归:
设置临界条件x=1时,兔子1对,x=2时,兔子2对。
递归函数f(x)=f(x-1)+f(x-2)
2、排列问题
生成n个元素{r1,r2,……,rn}的全排列
思路:
设R={r1,r2,……,rn}是要进行排列的n个元素,Ri=R-{ri}
集合X中元素的全排列记为perm(X)。
(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:
(1)当n=1时,perm(R)=(r),其中r是集合R中唯一的元素
(2)当n>1时,perm(R)由(r1)perm(R1),(r2)perm(R2),……,(rn)perm(rn)构成。
1731 Orders 全排列
3、整数划分问题
将正整数n表示成一系列正整数之和:n=n1+n2+...+nk
思路:
在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系:
(1)q(n,1)=1,n>=1
当最大加数n1不大于1时,任何正整数n只有一种划分形式,即n=1+1+……+1,一共n个1.
(2)q(n,m)=q(n,n),m>=n
最大加数n1实际上不能大于n。因此q(1,m)=1
(3)q(n,n)=1+q(n,n-1)
正整数n的划分由n1=n的划分和n1<=n-1的划分组成。
(4)q(n,m)=q(n,m-1)+q(n-m,m),n>m>1
正整数n的最大加数n1不大于m的划分由n1=m的划分和n1<=m-1的划分组成
4、二分搜素
递归实现:
非递归:
5、归并(Merge)排序
是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
6、快排