高斯消元1(解方程)



小Ho:<吧唧><吧唧><吧唧>

小Hi:小Ho,你还吃呢。想好了么?

小Ho:肿抢着呢(正想着呢)...<吞咽>...我记得这个问题上课有提到过,应该是一元一次方程组吧。

我们把每一件商品的价格看作是x[1]..x[n],第i个组合中第j件商品数量记为a[i][j],其价格记作y[i],则可以列出方程式:

a[1][1] * x[1] + a[1][2] * x[2] + ... + a[1][n] * x[n] = y[1]
a[2][1] * x[1] + a[2][2] * x[2] + ... + a[2][n] * x[n] = y[2]
                                  ...
a[m][1] * x[1] + a[m][2] * x[2] + ... + a[m][n] * x[n] = y[m]

我们可以对方程组进行3种操作而不改变方程组的解集:

1. 交换两行。

2. 把第i行乘以一个非0系数k。即对于j = 1..n, 令a[i][j] = k*a[i][j], y[i]=k*y[i]

3. 把第p行乘以一个非0系数k之后加在第i行上。即对于j=1..n, 令a[i][j] = a[i][j]+k*a[p][j],y[i]=y[i]+k*p[i]

以上三个操作叫做初等行变换。

我们可以使用它们,对这个方程组中的a[i][j]进行加减乘除变换,举个例子:

a[1][1] * x[1] + a[1][2] * x[2] + ... + a[1][n] * x[n] = y[1]    式子(1)
a[2][1] * x[1] + a[2][2] * x[2] + ... + a[2][n] * x[n] = y[2]    式子(2)

我们可以通过 式子(1) - 式子(2) * (a[1][1] / a[2][1]),将第1行第1列的a[1][1]变换为0。

对整个方程组进行多次变换之后,可以使得a[i][j]满足:

a[i][j] = 1 (i == j)
a[i][j] = 0 (i != j)

则整个方程组变成了:

x[1] = y'[1]
x[2] = y'[2]
...
x[n] = y'[n]
0 = y'[n + 1]
0 = y'[n + 2]
...
0 = y'[m]

这样的话,y'[1] .. y'[n]就是我们要求的x[1]..x[n]

小Hi:挺不错的嘛,继续?

小Ho:好,关于如何变换,我们可以利用一个叫高斯消元的算法。高斯消元分成了2个步骤:

首先我们要计算出上三角矩阵,也就是将方程组变为:

a[1][1] * x[1] + a[1][2] * x[2] + ... + a[1][n] * x[n] = y'[1]
      0 * x[1] + a[2][2] * x[2] + ... + a[2][n] * x[n] = y'[2]
      0 * x[1] +       0 * x[2] + ... + a[3][n] * x[n] = y'[3]
                                   ...
      0 * x[1] +       0 * x[2] + ... + a[n][n] * x[n] = y'[n]
      0 * x[1] +       0 * x[2] + ... +       0 * x[n] = y'[n + 1]
	                               ...
      0 * x[1] +       0 * x[2] + ... +       0 * x[n] = y'[m]

也就是通过变换,将所有a[i][j](i>j)变换为0。同时要保证对角线上的元素a[i][i]不为0。

方法也很见简单,从第1行开始,我们利用当前行第i列不为0,就可以通过变换将i+1..M行第一列全部变换为0,接着对于第2行,我们用同样的方法将第3..M行第2列也变换为0...不断重复直到第n行为止。

假如计算到第i行时,第i列已经为0,则我们需要在第i+1..M行中找到一行第i列不为0的行k,并交换第i行和第k行,来保证a[i][i] != 0。但这时候还有可能出现一个情况,就是第i..M行中的i列均为0,此时可以判定,该方程组有多解。


当得到上三角矩阵后,就可以从第n行开始逆推,一步一步将a[i][j](i<j)也变换为0.

因为第n行为a[n][n] * x[n] = y'[n],则x[n] = y'[n] / a[n][n]。

第n-1行为a[n-1][n-1] * x[n - 1] + a[n][n] * x[n] = y'[n - 1]。我们将得到的x[n]代入,即可计算出x[n-1]。

同样的依次类推就可以得到所有的x[1]..x[n]。


而对于多解和无解的判定:

当在求出的上三角矩阵中出现了 a[i][1] = a[i][2] = ... = a[i][n] = 0, 但是y'[i] != 0时,产生了矛盾,即出现了无解的情况。

而多解的证明如下:

假设n=3,m=3,而我们计算出了上三角矩阵为:

a * x[1] + b * x[2] + c * x[3] = d
                      e * x[3] = f
                             0 = 0

当我们在第一个式子中消去x[3]后,有a * x[1] + b * x[2] = g,显然x[1]和x[2]有无穷多种可能的取值。

小Hi:既然小Ho你都已经把整个算法讲了,那么我就只能给出伪代码了:

// 处理出上三角矩阵
For i = 1..N
    Flag ← False
    For j = i..M                // 从第i行开始,找到第i列不等于0的行j
        If a[j][i] != 0 Then
            Swap(j, i)          // 交换第i行和第j行
            Flag ← True
            Break
        End If
    End For
    // 若无法找到,则存在多个解
    If (not Flag) Then
        manySolutionsFlag ← True // 出现了秩小于N的情况
        continue;
    End If
    // 消除第i+1行到第M行的第i列
    For j = i+1 .. M
        a[j][] ← a[j][] - a[i][] * (a[j][i] / a[i][i])
        b[j] ← b[j] - b[i] * (a[j][i] / a[i][i])
    End For
End For 

// 检查是否无解,即存在 0 = x 的情况
For i = 1..M
    If (第i行系数均为0 and (b[i] != 0)) Then
        return "No solutions"
    End If
End For

// 判定多解
If (manySolutionsFlag) Then
	return "Many solutions"
End If

// 此时存在唯一解
// 由于每一行都比前一行少一个系数,所以在M行中只有前N行有系数
// 解析来从第N行开始处理每一行的解
For i = N .. 1
    // 利用已经计算出的结果,将第i行中第i+1列至第N列的系数消除
    For j = i + 1 .. N
        b[i] ← b[i] - a[i][j] * value[j]
        a[i][j] ← 0
    End For
    value[i] ← b[i] / a[i][i]
End For

那最后能够拜托你实现一下这个算法么?

小Ho:没问题,等我吃完这包薯片就去!

#include <stdio.h>
#include <algorithm>
#include <string.h>
#include<string>
#include <math.h>
#include <set>
#include<map>

#define MOD 1000000007
#define LL long long int

using namespace std;

void in(int & a)
{
    char ch;
    while((ch = getchar()) < '0' || ch > '9');
    for(a = 0; ch >= '0' && ch <= '9'; ch = getchar())
    {
        a = a * 10 + ch - '0';
    }
}

double a[1005][505], x[505], y[1005], t[505];
int n, m;

void print()
{
    for(int i = 0; i < m; ++i)
    {
        for(int j = 0; j < n; ++j)
        {
            printf("%0.2lf ", a[i][j]);
        }
        printf("\n");
    }
}

int main()
{
    while(~scanf("%d %d", &n, &m))
    {
        for(int i = 0; i < m; ++i)
        {
            for(int j = 0; j < n; ++j)
            {
                scanf("%lf", &a[i][j]);
            }
            scanf("%lf", &y[i]);
        }
        if(m < n)
        {
            printf("Many solutions\n");
            continue;
        }
        bool many = false;
        for(int i = 0; i < n; ++i)
        {
            if(a[i][i] > -0.000001 && a[i][i] < 0.000001) //为0
            {
                many = true;
                for(int j = i + 1; j < m; ++j) //如果下面有不为0的就替换掉当前行
                {
                    if(a[j][i] < -0.000001 || a[j][i] > 0.000001)
                    {
                        many = false;
                        memcpy(t, a[j], sizeof(t));
                        memcpy(a[j], a[i], sizeof(t));
                        memcpy(a[i], t, sizeof(t));
                        break;
                    }
                }
                if(many) //如果全为0无法构成上三角为多解
                {
                    break;
                }
            }
            for(int j = i + 1; j < n; ++j) //对角线化为1
            {
                a[i][j] /= a[i][i];
            }
            y[i] /= a[i][i];
            a[i][i] = 1;
            //print();
            for(int j = i + 1; j < m; ++j) //初等变换吧下面的都变为0
            {
                for(int k = i + 1; k < n; ++k)
                {
                    a[j][k] -= a[j][i] * a[i][k];
                }
                y[j] -= a[j][i] * y[i];
                a[j][i] = 0;
            }
            //print();
        }

        bool no = false;//判断无解的情况
        for(int i = 0; i < m; ++i)
        {
            bool flag = true;
            for(int j = 0; j < n; ++j)
            {
                if(a[i][j] < -0.000001 || a[i][j] > 0.000001) //系数是否全为0
                {
                    flag = false;
                    break;
                }
            }
            if(flag)
            {
                if(y[i] < -0.000001 || y[i] > 0.000001) //系数全为0,值不为0时无解
                {
                    no = true;
                    break;
                }
            }
        }
        if(no)
        {
            printf("No solutions\n");
            continue;
        }
        if(many)
        {
            printf("Many solutions\n");
            continue;
        }
        for(int i = n - 1; i >= 0; --i) //逆推消元
        {
            for(int j = n - 1; j > i; --j)
            {
                y[i] -= x[j] * a[i][j];
            }
            x[i] = y[i] / a[i][i];
        }
        for(int i = 0; i < n; ++i)
        {
            printf("%d\n", (int)(x[i] < 0 ? (x[i] - 0.1) : (x[i] + 0.1)));
        }
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值