statsmodels统计建模分析库 (2) --时间序列模型

本文介绍了使用Python的statsmodels库进行时间序列分析,包括数据导入、差分、ADF检验、白噪声检验、ACF/PACF、信息准则定阶和ARIMA模型构建。内容涉及如何判断数据平稳性、构建ARMA和ARIMA模型,并通过D-W检验评估模型效果。
摘要由CSDN通过智能技术生成

导入数据

import pandas as pd
import numpy as np
import seaborn as sns #热力图
import itertools 
import datetime
import matplotlib.pyplot as plt
import statsmodels.api as sm 
from statsmodels.tsa.stattools import adfuller #ADF检验
from statsmodels.stats.diagnostic import acorr_ljungbox #白噪声检验
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf #画图定阶
from statsmodels.tsa.arima_model import ARIMA #模型
from statsmodels.tsa.arima_model import ARMA #模型
from statsmodels.stats.stattools import durbin_watson #DW检验
from statsmodels.graphics.api import qqplot #qq图
dta = sm.datasets.sunspots.load_pandas().data  #statsmodels库中自带的数据集
dta.index = pd.Index(sm.tsa.datetools.dates_from_range('1700', '2008'))
del dta["YEAR"]
dta.plot(figsize=(12,8))<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值