(图文)AI应用开发新宠——向量数据库的概念科普,小白也能轻松掌握!!

一、从"猫"解析词向量与向量数据库的技术关联

1. 概念演进路径

猫科生物词向量表征向量数据库体系

通过这个直观案例,我们将揭示自然语言处理中​​特征向量化​​的核心原理与向量数据库的实践价值。

2. 生物特征识别启示

养猫爱好者或熟悉猫咪的人,能够快速识别不同品种的猫科动物。这种认知能力源于人类大脑自动进行的多维度特征解析:

  • ​形态特征​​:体态轮廓(暹罗猫的流线型 vs 布偶猫的蓬松感)
  • ​面部结构​​:耳部形状(折耳猫的折叠耳 vs 缅因猫的尖耳)
  • ​毛发特征​​:毛长与纹理(波斯猫的长绒毛 vs 美国短毛猫的短密毛)
  • ​斑纹样式​​:色块分布(三花猫的拼色 vs 狸花猫的条纹)

接下来我们通过对猫咪不同维度的提取以及组合来看一下实际效果

▍资料推荐

2.1 品种维度在这里插入图片描述

2.2 体型维度

如果我们使用一个水平轴来表示 体型大小 这个特征,这些不同品种的猫将落在不同的坐标点上,这样就可以通过体型的大小区分出一些品种,如下:在这里插入图片描述

2.3 毛发维度

如果仅仅靠体型一个特征,依旧会有很多品种的猫特征相近,比如 缅英猫奶牛猫折耳猫 就非常接近,所以我们继续添加多一个特征,比如毛发的长短,继续建立一个毛发的垂直轴,这样子就可以区分出更多品种。在这里插入图片描述

2.4 腿的长短维度

现在每个品种的猫就可以表示为一个二维的坐标点,但是哪怕有两个特征,仍然会有一些品种无法区分。
所以我们需要从更多的角度来观察,例如 腿的长短,这个时候在建立一个 腿的长短z轴,又有更多的品种被区分出来,现在每个品种的猫就可以表示为一个三维的坐标点,如下:在这里插入图片描述

2.4 其他可能的维度及数值转换

如果这个时候还想引入更多的特征进行区分,比如:眼睛大小尾巴长短毛发颜色声音大小耳朵形状 等等,虽然在坐标图上没法展示出来,但是我们却可以很轻松地将这些特征使用数值的方式展示出来,例如下方:

1. 暹罗猫: (0.4, 0.3, 0.4, 0.5, 0.3, 0.4, 0.5, ...)
2. 英国短毛猫: (0.7, 0.2, 0.5, 0.5, 0.5, 0.5, 0.5, ...)
3. 缅甸猫: (0.5, 0.3, 0.4, 0.5, 0.3, 0.4, 0.5, ...)
4. 波斯猫: (0.8, 0.8, 0.4, 0.8, 0.7, 0.4, 0.6, ...)
5. 布偶猫: (0.7, 0.6, 0.5, 0.8, 0.5, 0.4, 0.5, ...)
6. 无毛猫: (0.6, 0.1, 0.4, 0.5, 0.3, 0.4, 0.5, ...)
7. 中华田园猫: (0.5, 0.3, 0.5, 0.5, 0.5, 0.4, 0.5, ...)
8. 折耳猫: (0.6, 0.3, 0.4, 0.5, 0.3, 0.4, 0.7, ...)
9. 三花猫: (0.5, 0.3, 0.5, 0.5, 0.5, 0.5, 0.5, ...)
10. 美国短毛猫: (0.7, 0.2, 0.5, 0.5, 0.5, 0.5, 0.5, ...)
11. 狮子猫: (0.9, 0.7, 0.7, 0.8, 0.7, 0.8, 0.5, ...)
12. 奶牛猫: (0.6, 0.3, 0.5, 0.5, 0.5, 0.4, 0.5, ...)

2.5 总结

当记录的特征足够大维度足够大区分的程度也会越高,当看到一只猫,只需要将它转换成对应的 多维坐标数据/向量,就可以很轻松地找到这只猫的分类归属,而且不仅仅是猫,几乎所有的事物都可以使用这一套方式进行表达。

所以一个字、一个词、一句话、一篇文本、甚至一张图片都可以用这样一个 多维坐标数据,亦或者说 向量 记录对应的特征,而将 文本 转换为记录特征的 向量 就可以被称为词向量

▍资料推荐

3. 技术映射关系

上述生物特征识别机制,与NLP领域中的​​词向量技术​​存在深度关联:

  1. ​特征向量化​​:将词语映射为高维向量(如Word2VecBERT模型)
  2. ​语义空间构建​​:通过向量距离衡量语义相关性
  3. ​向量数据库​​:实现海量向量的高效存储与最近邻搜索

这种特征工程思维,正是现代语义搜索智能推荐等AI系统的底层支撑技术。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值