文章目录
Yarn 资源调度器
Hadoop 分三个部分组成:HDFS,MapReduce Yarn
Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序。
Yarn 基本架构
* Yarn 工作机制
MR(MapReduce)程序提交到客户端所在的节点------MapReduce 要做业了-地图如下
1 YarnRunner向ResourceManager申请一个Application-------2 RM(ResourceManager)将该应用程序的资源路径返回给YarnRunner -------3该程序将运行所需资源提交到HDFS上 -----4 程序资源提交完毕后,申请运行mrAppMaster --------- 5 RM将用户的请求初始化成一个Task ----- 6 其中一个NodeManager领取到Task任务 -------- 7 该NodeManager创建容器Container,并产生MRAppmaster ------ 8 Container从HDFS上拷贝资源到本地 --------9 MRAppmaster向RM 申请运行MapTask资源 ------10 RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。------11 -MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序 使用完毕释放回收资源-------- 12 MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask ---------- 13 ReduceTask向MapTask获取相应分区的数据 使用完毕释放回收资源-----14 程序运行完毕后,MR会向RM申请注销自己
资源调度器
目前,Hadoop作业调度器主要有三种:FIFO、Capacity Scheduler和Fair Scheduler。Hadoop2.7.2默认的资源调度器是Capacity Scheduler。
FIFO 先进先出调度器
假设有个任务很小还很紧急,但是有个任务很大很不紧急 ,但是在前面要先跑他 那你想跑这个很小很急 那只能把前面跑的那个很大杀死
容量调度器 Capacity Scheduler
*多个FIFO 并行====容量调度器*
** Fair Scheduler 公平调度器(灵活)
问
如果能回答上公平调度器相关 最好 ,如果想不起 就说用Hadoop2.7.2默认的资源调度器Capacity Scheduler 容量调度器
任务的推测执行
找执行最慢任务 给他执行一个备份任务,去看谁先干完 用谁的 ,
1.作业完成时间取决于最慢的任务完成时间
一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务可能运行非常慢。
思考:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?
2.推测执行机制
发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。
3.执行推测任务的前提条件
(1)每个Task只能有一个备份任务
(2)当前Job已完成的Task必须不小于0.05(5%)
(3)开启推测执行参数设置。mapred-site.xml文件中默认是打开的。
<property>
<name>mapreduce.map.speculative</name>
<value>true</value>
<description>If true, then multiple instances of some map tasks may be executed in parallel.</description>
</property>
<property>
<name>mapreduce.reduce.speculative</name>
<value>true</value>
<description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description>
</property>
4.不能启用推测执行机制情况
(1)任务间存在严重的负载倾斜;
https://zhuanlan.zhihu.com/p/64240857
()特殊任务,比如任务向数据库中写数据
你在工作中有没有碰到任务卡到过?
有
怎么处理:
开了任务推测执行机制,mapreduce 框架会帮我们把这个任务重启,