反垃圾
文章平均质量分 88
网易易盾
网易易盾是网易数智旗下一站式数字内容风控品牌,依托网易 26年的先进技术沉淀和一线实践经验,作为国内领先的数字内容风控服务商,为面向数字化业务的客户提供专业可靠的安全服务,涵盖内容安全、业务安全、应用安全、安全专家服务四大领域,全方位保障客户业务合规、稳健和安全运营。
展开
-
知物由学 | 弹幕蜂拥而入,智能审核平台如何用技术破局?
导读:弹幕的出现增加了视频观看者的深度参与感,弹幕也逐渐成为国内各大视频网站最基本的评论交互形式,本文将通过网易易盾在弹幕实现原理及交互方式方面的实践,具体介绍弹幕相较于传统聊天室的区别与实践经验,希望能为大家在弹幕系统设计方面带来一些借鉴。在 2022 年的今天,弹幕在国内的各大视频网站已经成为了一个最基本的评论交互形式,它为视频社交增添了很大的活力,然而这也给视频内容的审核工作带来了巨大挑战,在较为严格的审核场景下,数量庞大的弹幕通过机审后,我们会进行一轮或多轮的人工审核,但是为了不误判,易盾的智能审核原创 2022-11-18 09:52:01 · 839 阅读 · 0 评论 -
知物由学 | 垃圾内容肆虐,自监督学习助力“内容风控”效果提升
在深度学习领域中,研究人员发现,有监督学习存在标注难度高的问题,尤其是在内容业务端的风控过程中数据“大爆发”。因此,自监督学习的相关研究在近年蓬勃发展起来,达到并超越了有监督学习。通过借助无标签数据与无监督训练任务,自监督学习可有效改善传统有监督算法中“泛化性能不足”、“模型过拟合”、“严重依赖数据标注质量”等问题。那么,如何开展自监督学习?文章对自监督学习的方法做了超详细的解读,展示了SimCLR、Moco、BYOL三个方向,并介绍了各自的优势和应用场景。快来学习与分享吧。...原创 2022-07-01 14:17:48 · 437 阅读 · 0 评论 -
MCtalk创业声音丨博学明辨:兴趣社交,给退休前后老年朋友的「小而美」空间
每个时代都有属于自己的旋律,而创新与创业是时代更迭中不变的主题。从工业时代、信息时代,再到智能时代,从不缺少勇敢奋进的开拓者们,有人顺势而起,有人败兴而归,有人错过一个风口后依然满怀期待地等待下一个。他们的阅历越来越丰富、知识越来越渊博、意志越来越坚韧,获得了全方位的淬炼。《MCtalk创业声音》是网易智企推出的全新栏目,旨在关注各行各业变革、聚焦创新创业领袖。通过对话明星创业者,分享他们的创业故事和对行业的真知灼见。这是《MCtalk 创业声音》的第05期老年人陷入孤独的根源大多在于某种形原创 2022-05-26 11:35:02 · 400 阅读 · 0 评论 -
知物由学 | 弱监督语义分割:从图像级标注快进到像素级预测
语义分割,旨在将图像中的所有像素进行分类,一直是计算机视觉图像领域的主要任务之一。在实际应用中,由于能准确地定位到物体所在区域并以像素级的精度排除掉背景的影响,一直是精细化识别、图像理解的可靠方式。原创 2022-03-30 16:13:31 · 10350 阅读 · 1 评论 -
12月第3周易盾业务风控关注 | 中央网信办要求经脱敏处理的信息才可公开
易盾业务风控周报每周报道值得关注的安全技术和事件,包括但不限于内容安全、移动安全、业务安全和网络安全,帮助企业提高警惕,规避这些似小实大、影响业务健康发展的安全风险。1.政策监管观察【中央网信办要求经脱敏处理的信息才可公开】个人隐私权不可侵犯,在疫情防控面前也不例外。早在今年2月,中央网信办就发通知指出:任何单位和个人未经被收集者同意,不得公开姓名、年龄、身份证号码、电话等个人信息,因联防联控工作需要,且经过脱敏处理的除外。【欧盟数字新法案即将出台,给美科技巨头再施“紧箍咒”】美国科技巨头们在欧原创 2020-12-21 19:18:24 · 10227 阅读 · 0 评论 -
在热词中看舆论,摆脱“黑天鹅”效应
在互联网时代,热词往往反应了一段时间内公众普遍关注的事件。因此,热词计算是舆情系统中的核心模块,针对资讯、评论、弹幕等进行热词统计,可以快速对海量资讯提取核心词汇,帮助用户快速研判舆论舆情。然而海量数据的热词计算,对计算的实时性、准确性提出了很大的挑战。一、技术难点与常规解决方案○ 关键词提取,关键词提取好坏直接影响统计效果,如何提取高质量关键词?常规的技术方案,一般是通过计算TF-IDF词频提取关键词。然而,该方案需要维护复杂的词库,后续还需要不断更新词条,因此维护成本较大。○ 海..原创 2020-11-03 19:15:58 · 10564 阅读 · 0 评论 -
文本分类在内容安全应用中的数据不平衡问题
经过几十年的发展,文本分类在学术界已经是一个比较成熟的技术,目前自然语言处理(NLP)的研究热点已经不在文本分类上面。然而,作为内容安全检测的一个重要技术手段,文本分类在实际业务中还是有不少的挑战。首先,内容安全场景对分类的准确度要求极高,不但要求较低的误判率,任何一个漏判都有可能给产品方带来严重的后果。其次,众所周知数据不平衡对分类模型的影响很大,而内容安全场景恰恰存在非常严重的数据不平衡问题。本文主要讨论文本分类在内容安全应用中遇到的数据不平衡问题以及常用的解决办法。数据不平衡问..原创 2020-10-19 14:05:16 · 10007 阅读 · 0 评论