LeetCode-69 Sqrt(x)

本文介绍了一种求解整数平方根的有效算法。通过逐步递增的方式寻找最大的整数i,使得i的平方小于等于给定的非负整数x。该方法简单直观,并考虑了计算机表示范围内的最大值限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Implement int sqrt(int x).

Compute and return the square root of x, where x is guaranteed to be a non-negative integer.

Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned.

Example 1:

Input: 4
Output: 2

Example 2:

Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since 
             the decimal part is truncated, 2 is returned.

代码:

用反向的思想,i从1开始试,判断啥时候i*i能大于所给的数。

这里要注意最大值问题,计算机能表示的数最大是2147483647,而46340*46340 = 2 147 395 600, 也就是说46341 的平方会超出计算机所能表示的数,所以我们设置不管多大的数,算到46340就不往下算了。

class Solution {
public:
    int mySqrt(int x) {
        int i = 1;
        while(i*i<=x&&i!=46340)i++;
        if(i*i>x)
         return i-1;
        else
            return i;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值