手游用户数据分析平台

目录:

  1. 大数据间项目简历
    1. 大数据简历(项目部分)
    2. 大数据面试总结《二十》--优秀简历的编写
    3. 大数据开发面试指南
    4. 大数据技术之_32_大数据面试题_01_Hive 基本面试 + Hive 数据分析面试 + Flume + Kafka 面试
  2. 项目时间:2019-04 - 2019-08
  3. 技术架构:Hadoop+Flume+HBase+Kafka+Sqoop+Spark+Zookeeper+JDBC+Hive+Mysql
  4. 项目描述:
    1. 该系统是一个用户行为分析系统。系统的主要用户为公司内部的PM和运营人员,用户根据自己的需求去分析某一 类客户的流量数据。根据分析结果,PM可以优化产品设计,运营人员可以为自己的运营工作提供数据支持。用户在系统界面中选择某个分析功能对应的菜单,并进入对应的任务创建界面,然后选择筛选条件和任务参数,并提交任务。在接收到用户提交的任务之后,根据任务类型选择其对应的Spark作业,启动一条子线程来执行Spark-submit命令以提交Spark作业。Spark作业运行在Yarn集群上,并针对Hdfs中的海量数据使用SparkSQL进行计算,最终将计算结果写入Hdfs中。另外还集成Flume,Kafka和Spark,利用SparkStreaming,进行实时分析。用户通过系统界面查看任务分析结果,将结果返回给界面进行展现。
    2. 游戏数据的构成分为四个层面:
      1. 第一层是论坛媒体的数据,这是游戏外的数据
        1. 广告投放量分析
        2. 渠道合作分析
      2. 第二层是运营数据(其他作用)
        1. 结论一:在手游题材方面,手游公司应该向角色扮演类、休闲益智类、卡牌类游戏方向靠拢,而由于手机屏幕与PC相比过小、游戏操作样式较少等特性,适当减少体育类等题材的游戏,并非单纯地将PC上火爆的游戏平移到手机上。
        2. 结论二:在推广策略方面,手游公司依然应该注重应用分发平台这个渠道,毕竟绝大部分用户是通过这个平台来获知并下载游戏。在过去一段时间内,手游公司在广告推广方面无所不用其极——地铁站、视频广告、应用内植入等等,我们都能看到手游的身影,但调查结果显示,此举效果存疑。
        3. 结论三:在收费制度方面,应该谨慎考虑“下载付费”的策略。毕竟在互联网、移动互联网时代,“免费”的理念已经深入身心,“下载付费”会阻碍用户进入到游戏中。
        4. 结论四:在游戏设计方面,用户对游戏制作的精美程度并无太高的要求,但对装备、闯关等有较高的付费需求。手游公司应该在这些方面多加考虑,例如,如何将游戏关卡设计的更巧妙,如何将装备对游戏的影响力做的更好,同时也兼顾平衡。
        5. 结论五:一直以来,手游轻量化一直是行业的整体现象,因为手游本来就占据着用户的碎片化时间,不应该过重。但通过数据显示,超过三成的用户每天要在手游上花费超过2个小时的时间,这一部分手游“重度用户”对重度游戏存在需求。
        6. 结论六:从消费的角度看,超过半数的用户已经开始习惯付费,且多数用户并不计划改变过去一年的消费习惯——这意味着手游行业不用担心大规模的付费用户流失。
      3. 第三层是玩家的行为数据
      4. 第四层是业务常规数据
    3. 离线分析:
      1. 分析哪些数据
        1. 新区注册人数和时段的关系
          正式开区前通过预约的方式进行注册,在开区当前进去游戏和时间关系的比例
          开区当天注册的人数
          开区之后注册的人数及时间的关系
        2. 用户在注册之后,活跃度分析
        3. 用户游戏在线时间及时段分析
        4. 区组金钱充值和合区的分析
      2. 分析的过程
        1. 其他开发人员:游戏的日志产生消息。
        2. 本人:
        3. 用户注册产生的日志信息(账号信息(哪种账号)、注册时间、)
        4. 每次进入游戏及退出游戏产生的日志信息(账号信息、进入时间、退出时间、地点、分配的上线区组、登陆的设备)
        5. 游戏内的日志。
      3. 分析的结果
        1. 新区注册人数和日期的关系图
        2. 活跃度
        3. 游戏下载渠道分析
        4. 用户消费比例、消费因素分析及比例
    4. 实时分析:
  5. 责任描述
    1. 参与产品需求分析,技术方案选型,hadoop等开发环境的搭建;
    2. 编写、测试、优化MR程序对Flume收集上传到HDFS的数据进行清洗与过滤;
    3. 通过编写Hive HQL程序从时间、地域、浏览器等多个维度对pv,uv,活跃用户数、新注册用户数、二跳率等指标进行多维度分析统计;
    4. 编写Sqoop命令周期性或采用增量方式将处理好的结果表数据导入到MySQL中。
    5. 在数据中心经理指导下,接收、分析、实现来自需求部门的数据需求;
    6. 与数据中心运维工程师,数据中心架构师协同,进行日常数据问题审计、查证、处理。
  6. 网站参考
    1. 游戏数据分析框架
    2. 游戏数据分析-基本指标
    3. 游戏数据分析常用指标汇总

详细说明:

  1. 离线分析系统​​​​​​​
    1. 游戏玩家
      1 新增玩家
      1.1 新增设备激活:当日新增加的激活设备量。新增玩家账户:当日新增加的玩家帐户数
      1.2 玩家转化:安装游戏的玩家中(即激活设备)有注册账户的玩家比例,1人多次注册,只记1次有效转化。例如:共5台激活设备,其中3台每人1次注册,1台没有注册,1台注册了3次账户,共注册了6个不同账户;注册转化率=(3+1)/5=80%,而不是用6次注册/5台设备
      1.3 单设备账户数量分析(小号分析):您所选时间内激活的设备,到当前为止的注册账号数目分布情况。通过小号分析能帮助了解多少比例的设备会反复注册多个账户,多少比例至今还未进行注册,分析刷小号情况
      1.4 玩家账户类型:新增玩家帐号的帐户类型分布情况。比如游戏厂商自有账号、匿名账号、QQ账号、新浪微博账号等等
      1.5 地区:新增玩家帐号的地区分布情况
      1.6 渠道:新增玩家帐号的渠道分布情况,每个玩家始终归入首次设备激活时的渠道。比如ios、安卓。
      1.7 性别:新增玩家帐号的玩家性别情况,根据您的游戏中传入的性别确定玩家的性别
      1.8 年龄:新增玩家帐号的年龄分布情况,根据您传入的年龄确定玩家的年龄段
    2. 活跃玩家
      2.1 DAU(Daily Active User)日活跃用户:在当天登录过游戏的用户。有效反映和衡量一款游戏核心用户数。
      2.2 WAU(Weekly Active User)周活跃用户:当日的最近一周(含当日的倒推7日)活跃玩家,将进行过游戏的玩家按照帐户进行排重。
      2.3 MAU(Monthly Active User)月活跃用户:当日的最近一月(含当日的倒退30日)活跃玩家,将进行过游戏的玩家按照帐户进行排重。
      2.4 DAU/MAU:可体现玩家的总体粘度,衡量这30天内每日活跃玩家的交叉重合情况。此比例越趋近于1,代表月活跃中有更多玩家多日活跃;比例越趋近0,则代表大量玩家只在一日中活跃。当比例小于0.1时,游戏的自传播性将很差。DAU/MAU×30也用于大致衡量玩家平均每月活跃天数。
      2.5 活跃玩家已玩天数:所选时期的活跃玩家的活跃日期减新增日期的日数差(即其已进行游戏的天数)的分布情况。
      2.6 活跃玩家等级:所选时期每日活跃玩家的等级分布情况,由每日数据组成的时期趋势可观测等级的总体走势。
      2.7 活跃玩家地区:所选时期排重活跃玩家的地区分布情况。
      2.8 活跃玩家渠道:所选时期排重活跃玩家的渠道分布情况,渠道按照其最初新增时的渠道确定。
      2.9 活跃玩家性别:所选时期排重活跃玩家的性别情况。
      2.10 活跃玩家年龄:所选时期排重活跃玩家的年龄分布情况。
    3. 玩家留存
      3.1 新增账户留存率:某日新增的玩家/设备中,在该日后的第N日中,还有进行游戏的玩家/设备比例。
      例如:5月3日新增玩家为100人,这100人中有24人在5月10日这一天内还有玩过游戏,5月3日的7日留存率=24/100=24%
      3.2 激活设备留存率:某日新增的玩家/设备中,在该日后的第N日中,还有进行游戏的玩家/设备比例。
      例如:5月3日新增玩家为100人,这100人中有24人在5月10日这一天内还有玩过游戏,5月3日的7日留存率=24/100=24%
      3.3 留存用户分析:
      用户群:次日留存用户,7日留存用户,30日留存用户
      分析方式:新增日的等级,新增日的游戏次数,新增日的游戏时长,新增日是否付费,玩家性别,玩家年龄。
  2. 实时在线分析系统
    1. ​​​​​​​付费转化
      4.1 新增付费玩家:当日新增加的充值玩家。
      4.2 累计付费玩家:截至当日,累计的充过值的玩家数。
      4.3 总体付费率:截至当日,累计付费玩家占累计总玩家的比例(累计付费玩家/累计玩家帐户)。
      4.4 新玩家-首日付费率:所选时期的新增玩家中,在新增当日即进行充值的玩家数和其占比。
      4.5 新玩家-首周付费率:某自然周中进行付费的玩家(排重)占该自然周活跃玩家的比例。
      4.6 新玩家-首月付费率:某自然月中进行付费的玩家(排重)占该自然月活跃玩家的比例。
      4.7 新玩家首付的游戏天数:所选时期内的新增付费玩家,按照其已经玩游戏的天数(首付日期-新增日期)进行分布。
      4.8 新玩家首付的累积游戏时长:所选时期内,玩家首次付费时在游戏中累计的游戏时长分布情况。
      4.9 玩家首付等级:所选时期内,玩家首次付费时的等级分布情况。
      4.10 玩家首付金额:玩家在游戏中首次充值时,支付的单比金额的分布情况。
      4.11 首付充值包类型:玩家在游戏中首次充值时,所选择的充值包的类型分布情况​​​​​​​
    2. 国内第三方数据服务提供商DataEye发布《手游玩家秋冬节假日行为分析报告》。报告显示:节假日对于手游玩家活跃有明显的促进作用,新增用户也有所增加;手游玩家在中秋、国庆、元旦、春节这些有假期的节日中,为获得节日奖励,将更多的精力投入到游戏中,因此其每日累计游戏时长也有所增加。
  3. 玩家游戏时长分布均匀
    115921294
  4. 绝大部分用户通过分发渠道推荐下载手游
    115921301
  5. 花钱玩手游的人更多
    115921302
  6. 多数人消费预算不会变化
    115921307
  7. 为升级装备而付费的人居多
    115921333
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值