Stable Diffusion(SD)中有多种放大模型可供选择,一些常用的放大模型包括:
4x-UltraSharp:响应速度快,放大效果较好,边缘清晰且细节不错;
r-esrgan4x+:常用于增强现实感的图像;
r-esrgan4x-anime6b:一般用于二次元风格的图像;
bsrgan、esrgan、swinir_4k、realesrgan_x4plus等。
选择合适的放大模型需要考虑多个因素,例如图像的风格(如真人、二次元等)、想要达到的效果以及个人对细节的要求等。不同的放大模型在处理不同类型的图像时可能会产生不同的效果。
在实际使用中,你可以通过尝试不同的放大模型,观察它们对特定图像的放大效果,然后根据自己的需求和偏好来选择最适合的模型。此外,还可以结合其他参数的调整,如重绘幅度、采样方法等,以获得更理想的放大结果。
以下是一些常见的 SD 放大方法及其步骤简述:
- 文生图高清修复:在文生图的界面中打开高清修复,指定放大算法(如上述推荐的模型)。需额外下载的模型可放置在“sd 目录\models\esrgan”下;
- 图生图放大倍数:来到图生图界面,缩放模式选择仅调整大小,可修改重绘尺寸或直接指定重绘尺寸倍数。注意固定 seed 值以及降低重绘幅度;
- 使用 Ultimate SD Upscale 脚本:这是 SD Upscale 的升级版,需额外下载安装。在图生图界面中使用该脚本,可根据图像的最终成像调整相关参数,如“target size type”(定义最终图像的大小来源)、“upscaler”(选择放大算法)等;
- ControlNet中的 tile 模型:在文生图中使用 tile resample 预处理器,对原图进行一定比例的缩小后再靠 ControlNet 放大并增加细节。它能对原图进行分割放大,且在识别某一分区内容不符合提示词时会无视,保证不会出现方块拼图的结果。
但由于AIGC刚刚爆火,网上相关内容的文章博客五花八门、良莠不齐。要么杂乱、零散、碎片化,看着看着就衔接不上了,要么内容质量太浅,学不到干货。
这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。
有需要的朋友,可以点击下方免费领取!
AIGC所有方向的学习路线思维导图
这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
AIGC工具库
AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
有需要的朋友,可以点击下方卡片免费领取!
精品AIGC学习书籍手册
书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。
AI绘画视频合集
我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】