论文研读
文章平均质量分 86
yihanyifan
所谓梦想,就是永不停息的疯狂
展开
-
图神经网络Core数据集介绍
图神经网络:Core数据集介绍原创 2022-07-24 16:58:45 · 3341 阅读 · 1 评论 -
论文研读:Label Contrastive Coding based Graph NeuralNetwork for Graph Classification
图对比学习原创 2022-07-06 15:40:37 · 727 阅读 · 0 评论 -
GCC: Graph Contrastive Coding for Graph Neural NetworkPre-Training
图表示学习已经成为解决现实问题的强大技术。各种下游图学习任务受益于其最近的发展,如节点分类、相似度搜索和图分类。然而,现有的图表示学习技术专注于领域特定的问题,并为每个图数据集训练一个专用模型,这通常不可转移到域外数据。受自然语言处理和计算机视觉在预训练方面的最新进展的启发,我们设计了图对比编码(GCC)1 -一个自我监督的图神经网络预训练框架,以捕获跨多个网络的通用网络拓扑属性。我们将GCC的预训练任务设计为网络中的子图实例判别,并利用对比学习使图神经网络能够学习内在的和可转移的结构表征。我们在三个图学习原创 2022-06-29 19:24:14 · 1530 阅读 · 0 评论 -
论文阅读:Graph Contrastive Learning with Augmentations
图结构数据上的广义、可转移和鲁棒表示学习仍然是当前图神经网络(GNNs)面临的一个挑战。与用于图像数据的卷积神经网络(CNNs)不同,对gnn的自我监督学习和预训练的探索较少。在本文中,我们提出了一个图对比学习(GraphCL)框架来学习图数据的无监督表示。首先,我们设计了四种图增广来包含各种先验。然后,我们在四种不同的设置中系统地研究了图增强的各种组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。结果表明,即使不调优扩展范围,也不使用复杂的GNN架构,我们的GraphCL框架可以产生与最先进原创 2022-06-17 23:00:19 · 1143 阅读 · 0 评论 -
CREATING MESSAGE PASSING NETWORKS
PyG消息传递机制原创 2022-06-13 10:50:45 · 212 阅读 · 0 评论 -
PyG教程1:数据的介绍
PyG使用:数据操作原创 2022-06-13 10:32:30 · 1716 阅读 · 0 评论 -
论文:Towards Unsupervised Deep Graph Structure Learning
当原始图结构中存在噪声连接时,gnn的性能会下降;此外,gnn对显式结构的依赖使其无法应用于一般的非结构化场景。为了解决这些问题,最近出现的深度图结构学习(GSL)方法提出在节点分类任务的监督下,与GNN共同优化图结构。这些方法集中在监督学习场景,这导致了几个问题,即:依赖标签,边缘分布的偏差,以及应用任务的限制。本文提出了一个更实用的GSL范式——无监督图结构学习,学习到的图拓扑是由数据本身优化的,没有任何外部指导(标签)。为了解决无监督GSL问题,我们提出了一种新的基于自监督对比学习的StrUcture原创 2022-06-10 18:55:56 · 758 阅读 · 0 评论 -
论文阅读:NEURAL MACHINE TRANSLATIONBY JOINTLY LEARNING TO ALIGN AND TRANSLATE
abstract神经网络机器翻译是最近提出的一种机器翻译方法。与传统的统计机器翻译不同,神经网络机器翻译的目的是建立一个单一的神经网络,通过联合调节使翻译性能最大化。最近提出的神经机器翻译模型通常属于编码器-解码器系列,它们将源语句编码成一个固定长度的向量,解码器从中生成翻译。在本文中,我们推测,使用一个固定长度的向量是改善这个基本的性能瓶颈encoder-decoder架构,并提出自动扩展这个通过允许一个模型(软)搜索部分源相关的句子预测目标词,不需要将这些部分明确地构成硬段。通过这种新方法,我们在英原创 2022-03-02 21:16:25 · 894 阅读 · 0 评论 -
论文阅读:GMAN: A Graph Multi-Attention Network for Traffic Prediction
摘要:在本文中,我们主要聚焦于时空因素,提出了一种图多重注意力网络(GMAN)去预测交通信息。GMAN采用了一种编码器解码器结构,同时编码器和解码器均由多个时空注意块组成,以模拟时空因素对交通状况的影响。编码器编码输入的交通特征,解码器预测输出序列。在编码器和解码器之间,应用转换注意层对编码后的交通特征进行转换,以生成作为解码器输入的未来时间步长的序列表示。转换注意机制模拟了历史时间步长和未来时间步长之间的直接关系,有助于缓解预测时间步长之间的误差传播问题。在两个实际交通预测任务(交通量预测和交通速原创 2022-03-01 10:36:18 · 3704 阅读 · 0 评论