摘要:
在本文中,我们主要聚焦于时空因素,提出了一种图多重注意力网络(GMAN)去预测交通信息。
GMAN采用了一种编码器解码器结构,同时编码器和解码器均由多个时空注意块组成,以模拟时空因素对交通状况的影响。编码器编码输入的交通特征,解码器预测输出序列。在编码器和解码器之间,应用转换注意层对编码后的交通特征进行转换,以生成作为解码器输入的未来时间步长的序列表示。转换注意机制模拟了历史时间步长和未来时间步长之间的直接关系,有助于缓解预测时间步长之间的误差传播问题。在两个实际交通预测任务(交通量预测和交通速度预测)上的实验结果证明了GMAN算法的优越性。特别是,在提前1小时的预测中,GMAN方法比先进的MAE方法提高了4%
介绍
最近的研究将交通预测表述为一个图模型问题,因为交通条件受到路网图的限制。利用图卷积网络(GCN) ,这些研究在短期(提前5 ~ 15分钟)车流量预测方面取得了有希望的结果。然而,长期(直到几个小时前)的交通预测在文献中仍然缺乏令人满意的进展,主要是由于以下挑战。
1)复杂的时空相关性
动态空间相关性。如图1所示,道路网络中各传感器之间的交通状况相关性随时间变化显著(例如,在高峰时间之前和期间)。如何动态选择相关传感器的数据来预测目标传感器长期的交通状况是一个具有挑战性的问题
非线性的时间相关性。同样在图1中,传感器处的交通状况可能会发生巨大而突然的波动(例如,由于事故),影响不同时间步长之间的相关性。在未来如何自适应建模非线性时间相关性任然是一个大的挑战。
2) 对误差传播的敏感性。
从长远来看,每一个时间步中的小错误都可能在预测未来时被放大。这种错误传播使得对遥远未来的预测非常具有挑战性。
为了解决上述挑战,我们提出了一个图多注意网络(GMAN),随着时间步长的进行以预测道路网络图上的交通状况。这里,交通状况指的是对交通系统的观察结果,可以用数值报告。为了说明目的,我们关注交通量和交通速度的预测,尽管我们的模型可以应用于其他数值交通数据的预测。
GMAN遵循编码器-解码器架构,其中编码器编码输入交通特征,解码器预测输出序列。在编码器和解码器之间添加转换注意层,以转换编码的历史交通特征以生成未来表示。编码器和解码器都由ST-Attention块堆栈组成。每个st -attention 由空间注意机制对动态空间相关性进行建模,时间注意机制对非线性时间相关性进行建模,门控融合机制对时空表征进行自适应融合。转换注意机制直接模拟了历史和未来时间步长之间的关系,以减轻误差传播的影响。在两个真实数据集上的实验证实了GMAN达到了最先进的性能。
本工作的贡献归纳如下:
- 我们提出了空间和时间的注意机制来分别模拟动态的空间和非线性的时间相关性。此外,我们还设计了一种门控融合机制来自适应地融合空间和时间注意机制所提取的信息
- 我们提出了一种转换注意机制,将历史交通特征转换为未来表征。这种注意机制建立了历史和未来时间步骤之间的直接关系,以缓解错误传播的问题。
- 我们在两个真实世界的交通数据集上评估了我们的图多注意网络(GMAN),并观察到在1小时前的预测中,与最先进的基线方法相比,其容错能力提高了4%。
Graph Multi-Attention Network
The framework of Graph multi-attention network (GMAN).