1、数组的静态初始化
数组:
同一种数据类型的集合。也就是容器
多种定义格式:
Int[] arr=newint[]//标准格式,可以明确数组的数据类型,和数组名,但是不知道数组的长度
Int[] arr=newint[]{2,1,3,4,5,}//通过大括号可以标示出数组中的内容,此处最好别写长度,因为容易出错,因为即初始化实体,又初始化实体中的元素。
Int[]arr={2,1,3,4,5};//可以明确数组的数据类型,和数组名,也可以知道数组中的内容。
2、arr.length:方便获取数组中的元素个数的方式。
3、操作数组的最基础的思想以及核心思想:
a) 最基础的思想:就是遍历。什么是遍历。
Eg:int[] arr =new int[3];
int[] arr ={4,8,9,2,6,9};//明确了数组的类型和长度,并明确了数组中元素的内容。
// int[] arr1 = newint[]{4,8,9};
//方便获取数组中的元素个数的方式,可以使用数组实体一个属性。length
System.out.println("len:"+arr.length);
for(int x=0;x<arr.length; x++)
{
if(x%2==1)
System.out.println("arr["+x+"]="+arr[x]);//arr[0]= 4;
}
这就是遍历的思想,获取数组中的元素,通常会用到遍历。
b)核心思想:就是操作数组中元素的角标,角标即索引,因为存数据的最终目的就是取出数据使用,就是操作角标,操作动作:1、给数组角标上的元素赋值,2、获取角标上元素的值,存储都得用角标
4、数组中常见的操作:
a) 获取最值:
思路:
1、首先我们要定义一个功能完成获取数组中最大值的动作;
2、定义个函数来实现这一功能;明确结果,整数数组中的最大值,int,明确是否有未知内容参与运算,参数列表中有一个参数,数组类型int[],一定要注意这里是数组类型,不是int型;
3、如何实现功能细节呢?
1、对数组中的元素进行比较,将比较后比较大的值进行记录,并参与下一次比较,当数组中的元素都比较完成后,最大值就已经被记录下来了。
2、每次比较的较大的值不确定,定义一个变量进行记录,该变量如何初始化呢?只要初始化为数组中的一个元素即可。
3、应该让数组中的元素自动和该变量记录的元素进行比较,所以可以使用遍历,获取数组中的每一个元素。
4、当遍历到元素比变量中的记录的元素大,用该变量记录住更大的元素。
5、遍历结束后,变量存储就是数组中的最大值。
实现代码:eg:
Public staticint getMax(int arr)
{
/.定变量记录较大的值;
Int max=arr[0];//初始化数组中的任意个元素;
//对数组进行遍历比较
For(int x=1;x<arr.length;x++)
{
If(arr[x]>max)
Max=arr[x];
}
Return max;
}
同样有另外一种方式获取最大值
Public staticint getMax(int[] arr)
{
Int maxIndex=0;//初始化为数组中一个元素的角标
For(int x=1;x<arr.length;x++)
{
If(arr[x]>arr[maxIndex])
maxIndex=x;
}
Return arr[maxIndex];
}
b) 排序:
1、选择排序:
首先通过数组中元素的比较方式来分析:
用数组中第一个角标的元素与数组中第二个角标的元素进行比较,发现9比6大,进行位置置换,此处应该定义一个三方变量,用来记录住置换过程的元素值,然后再用第一个角标的元素与下一个角标元素进行比较,按照全面的原则进行置换位置,如果前者小于后者,则不置换位置,一次比较,当第一轮结束之后第一个角标出能取的该数组中最小的元素的值,然后再用第一个角标的元素开始和下一个角标的元素进行比较,同理,当第二轮结束后,第二个角标处获取了该数组中的第二小的值。所以我们发现当依次这样比较下去,就可以对数组中的元素进行排序,当比较到arr.length-1元素时,发现只剩下这一个元素,没有其他元素和它进行比较了。
思路:
1、首先定义一个功能函数对数组进行排序,
2、明确结果,没有返回值,因为它只是对数组进行排序的一个动作,明确是否有未知内容参与运算,有,数组类型int[] arr
实现代码:
Public static void selectSort(int[] arr)
{
For(int x=0;x<arr.length-1;x++)
{
For(int y=x+1;y<arr.length;y++)
{
if(arr[x]>arr[y])
{
Int temp=arr[x];
Arr[x]=arr[y];
Arr[y]=temp;
}
}
}
}
优化后的选择排序:
从上面的排序图中我们可以知道,对数组中元素进行置换位置的次数过多,也就是对堆内存的操作频繁,降低了性能,下面我们可以通过这种方式对性能优化。
思路:
在栈内存中我们定义两个变量,分别用来记录较小的元素的值和较小元素的角标,然后对其进行初始化,至于初始化的值只要是数组中的任意元素即可,然后拿数组中的元素与它进行比较,如果发现拿去比较的元素比变量中记录的数值要小,那么就进行位置置换,并记录下较小的元素的角标,依次把数组中的元素遍历完,就可以获取数组中的最小元素的值和角标,然后我们拿初始化的值和获取的最小的元素进行位置的置换,这样以来当我们获取了数组中的元素的最小的时候,堆内存中的只用操作一次位置即可,这样的就提高性能。
实现代码:
Public staticvoid selectSort_2(int[] arr)
{
For(int x=0;x<arr.length-1;x++)
{
Int num=arr[x];
Int index=x;
For(int y=x+1;y<arr.length;y++)
{
If(num>arr[y])
Num=arr[y];
Index=y;
}
If(index!=x)
{
int temp = arr[x];
arr[x] = arr[index];
arr[index] = temp;
}
}
}
注意:复习的时候添加注释
2、冒泡排序:
首先通过排序方式来分析其步骤:
通过排序方式,可以知道是用数组中的元素挨个比较,如果前面的元素的值比它下一个角标的元素大,则进行位置置换,然后再用第二个角标的元素与下一个角标的元素进行比较,同样如果下一个角标的元素比它小,则进行位置置换,这样当比较到arr.length-1个元素时已经没有和它进行的比较的元素了,当第一轮比较结束后,我们可以知道最后一个角标的元素为该数组中的最大值,按照同样的原理进行下一次比较,依次获取了比较大的元素的值。
实现代码:
Public static void bubbleSort(int[] arr)
{
For(int x=0;x<arr.length-1;x++)
{
For(int y=0;y<arr.length-1-x;y++)//-1的目的是因为遍历到最后避免角标越界,-x是因为随着x的递增,参与比较的元素递减,
{
If(arr[y]>arr[y+1])
{
//位置置换
}
}
}
}
a) 折半查找:
首先分析数组元素的查找方式:
首先要明确数组时有序的。
首先定义三个变量min、mid、max分来用来记录最小角标、中间角标、最大角标,中间角标的获取为(min+max)/2;获取中间角标之后,就可以获取中间角标对应的元素arr[mid];用我们所需要查找的key与中间角标运算进行比较,如果key>arr[mid];那么此时min的位置就是mid的下一个角标,min=mid+1;然后再次获取中间角标的元素,mid=(min+max)/2,同时也获取了中间角标对应的数组元素,arr[mid],然后同理,拿key与中间角标的元素进行比较.同样的原则,依次比较,直到key==arr[mid]的时候获取key.如果当出现了min>max或者时候则说明我们要查找的key在该数组中布存在,return-1;
实现代码:
Public static void binarySearch(int[] arr int key)
{
Int min,mid,max;
Min=0;
Max=arr.length-1;
Mid=(min+max)>>1//相当于/2,右移的效率比它要高
While(arr[mid]!=key)
{
If(key>arr[mid])
Min=mid+1;
Else if(key<arr[mid])
Min=mid-1;
If(max<min)
Return -1;
Mid=(max+min)>>1;
}
Return mid;
}
注意:复习的添加代码注释
总结:折半查找也称二分查找,这种查找可以提高效率,但是被查找的数组的额元素必须是有序的。不能对无序的数组进行排序后再用折半查找,因为这时候数组中元素的角标已经发生变化了。
5、查表法思想:
a) 什么时候使用查表法?
当元素很多,而且这些元素与数组有对应关系,而且这些数字都有角标的规律的时候。
扩展:什么时候使用数组?
当同一类型的元素较多时,就使用数组这个容器对数据进行存储。
b) 查表法思想的代码体现:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
'0', '1', '2', '3','4','5', '6',' 7', '8', '9','A',' B', 'C' ,'D', 'E' ,'F'
我们发现十六进制中一共有16个元素,而且每通过&15获取的数字都再15之内,都有对应的十六进制元素,而且元素对应的数字正好有规律,而且符合了数组这种容器的特点角标,那么可以将十六进制的元素都存储到数组中,将每次&15的结果作为角标去查这个数组,就可以获取到十六进制的对应的元素。这就是查表思想。
代码体现:
Public static void searchList(int num)
{ //定义一个十六进制的元素表
Char[] arr={'0', '1', '2', '3', '4','5', '6',' 7', '8', '9','A',' B', 'C' ,'D', 'E' ,'F'};
//定义一个char类型元素的数组,用于存储每次获取到的十六进制值。
Char[] chs=new char[8];
Int pos=chs.length;
While(num!=0)
{
Int temp=num&15;
Chs[--pos]=arr[temp];
Num=num>>>4;
}
For(int x=pos;x<chs.length;x++)
{
//打印数组;
}
}
注意:复习时添加代码注释;
通过上面我们可以知道那么是否可以定义这样的一个功能函数呢?用来对十进制、二进制、八进制、十六进制进行转换?
思路:
1、明确结果,没有返回值,只是对给定的数据转换的功能。
2、明确是否有未知内容参与运算,有,是什么?求的数值num,十六进制是&15,八进制是&7,二进制是&1,那么&的这个是不确定的,我们定义为变量 base,当这个数值通过&上这些数据后,要取出后面的数值,我们通过右移来实现,但是各个进制的不一样右移的位置数也是不一样的,十六进制是无条件右移四位,八进制是无条件右移三位,二进制是无条件右移1位,所以这个数也是不确定的,定义变量 offset
实现代码:
//十进制--二进制
public staticvoid toBin(int num)
{
trans(num,1,1);
}
//十进制--八进制
public staticvoid toOctal(int num)
{
trans(num,7,3);
}
//十进制--十六进制
publicstatic void toHex(int num)
{
trans(num,15,4);
}
Public staticvoid trans(int num,int base,int offset)
{
If(num==0)
{
Sop(0);;
Return;
}
//定义一个十六进制的元素表
Char[] arr={0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',' B', 'C' ,' D', 'E' ,'F'};
Char[] chs=new char[32];
Int pos=chs.length;
While(num!=0)
{
Int temp=num&base;
Chs[--pos]=arr[temp];
Num=num>>>offset;
}
For(ingt x=pos;x<chs.length;x++)
{
System.outr.println(chs[x]);
}
}
---------------------- android培训、 java培训、期待与您交流! ----------------------