ACE-Step - 20秒生成4分钟完整歌曲,音乐界的Stable Diffusion,支持50系显卡 本地一键整合包下载

ACE-Step 是由ACE Studio与StepFun联合开发的音乐生成模型,被誉为“音乐界的Stable Diffusion”。该模型以其惊人的生成速度和多样化功能引发行业热议,支持19种语言,可在短短20秒内生成一首长达4分钟的完整音乐作品,效率比主流模型快15倍以上。同时支持英语,中文,俄语,西班牙语,日语,德语,法语,葡萄牙语,意大利语,韩语等多国语言。

ACE-Step 和之前发布的 DiffRhythm 类似,可以用于一键生成音乐歌曲,但也有相同的问题,就是漏字问题严重,期待后期能解决这个历史问题。


核心功能亮点: 从歌词到完整歌曲一气呵成  

ACE-Step以其强大的生成能力重新定义了AI音乐创作。其核心功能包括:  
歌词驱动创作:输入歌词,模型自动生成旋律并演唱完整歌曲;  
风格化编曲:根据指定的风格标签(如说唱、电子乐、流行等),自动生成伴奏和配器;  
精准修改:支持对歌曲某段歌词进行修改,而不影响原有旋律的连贯性;  
多样化生成:能够生成带风格的说唱、电子乐、人声或复杂配器,满足不同音乐场景需求。

社交媒体上,开发者与音乐创作者对ACE-Step的“一句歌词快速写歌”功能赞不绝口,认为其为音乐创作提供了前所未有的便捷性与灵活性。


‌应用领域

音乐创作‌:为专业音乐人提供快速创作工具,实现"一句歌词生成完整歌曲"
内容生产‌:满足短视频、广告等场景的定制化音乐需求
教育娱乐‌:降低音乐创作门槛,让普通用户也能体验作曲乐趣
跨文化创作‌:借助多语言支持促进国际音乐交流


使用教程:(建议N卡,显存12G起。支持50系显卡,基于CUDA12.8)
输入需要生成歌曲的歌词,其他参数可以默认,只调节生成时长及生成歌曲风格标签。
最后生成即可。
同时支持在线编辑歌词,一键重绘,延长等。


下载地址:私信获取

<think>嗯,用户问的是如何在50显卡上安装配置Stable Diffusion。首先,我得确认一下50显卡的具体型号,比如NVIDIA的RTX 50列可能还没发布,但用户可能指的是AMD的某个50列?不过根据提供的引用内容,用户之前提到的是AMD显卡,比如Radeon RX 500列?或者是NVIDIA的旧款比如GTX 50列?不过现在常见的可能是AMD的RX 500列,比如RX 580之类的。 首先,根据引用1和引用2,用户之前有在AMD显卡(比如核显)上安装Stable Diffusion的经验,而现在想换到50显卡。需要明确50显卡是NVIDIA还是AMD的,但根据常见情况,可能用户指的是NVIDIA的GTX 50列,比如GTX 1050之类的,或者AMD的RX 500列。 如果是AMD显卡的话,安装步骤可能类似引用2中的AMD核显安装方式,需要配置ROCm或者使用DirectML。但如果是NVIDIA显卡,则需要安装CUDA和cuDNN。但用户提到的50可能属于较旧的型号,比如GTX 1050支持CUDA但可能兼容性需要注意。 接下来,我需要查看用户提供的引用内容是否有相关指导。引用1是CSDN上关于AMD显卡安装的教程,引用2是AMD核显的安装步骤。用户现在想换到50显卡,可能属于不同的GPU品牌,因此可能需要不同的配置方法。 假设用户指的是NVIDIA的50显卡,比如GTX 1050,那么需要确认该显卡是否支持CUDA。GTX 1050支持CUDA,但可能需要安装特定版本的驱动和CUDA工具。然后,在安装Stable Diffusion时,需要配置使用CUDA的版本,比如通过PyTorch的CUDA支持。 但用户可能混淆了显卡型号,或者有拼写错误。需要进一步确认,但根据现有信息,可能需要指导用户安装适合他们显卡的驱动和框架支持。例如,如果是NVIDIA显卡,安装CUDA;如果是AMD,使用ROCm或DirectML。 根据引用2中的步骤,AMD核显安装需要配置Python环境、安装依赖库如onnxruntime-directml,并修改启动参数。对于不同的AMD显卡,可能需要类似的步骤,但如果是较新的AMD显卡,可能需要使用ROCm支持。 因此,回答需要分情况讨论:如果是NVIDIA显卡,则安装CUDA相关;如果是AMD显卡,则使用DirectML或ROCm。同时,需要提醒用户检查显卡型号和兼容性,安装正确的驱动,配置虚拟环境,调整启动参数等步骤。 此外,用户可能遇到问题,比如显存不足或兼容性错误,需要提供常见问题解决方法,比如降低批次大小,使用--medvram参数等。最后,建议用户参考社区资源或具体教程,根据显卡型号搜索更详细的指南。</think>根据现有资料和AMD显卡配置经验,在50显卡(以AMD Radeon RX 500列为例)安装Stable Diffusion的步骤如下: ### 一、环境准备 1. **安装Python 3.10.6** 需特别注意版本兼容性,建议通过[Python官网](https://www.python.org/downloads/)下载并勾选"Add to PATH"选项[^2] 2. **更新显卡驱动** 打开AMD Radeon Software控制面板,检查并安装最新驱动,确保支持DirectML或ROCm框架 ### 二、项目配置 ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui cd stable-diffusion-webui python -m venv venv source venv/bin/activate # Linux/macOS # 或 venv\Scripts\activate # Windows ``` ### 三、关键依赖安装 ```python # requirements.txt中添加特殊依赖 pip install torch-directml ``` 需修改`webui-user.bat`启动参数: ```bat set COMMANDLINE_ARGS=--use-directml --precision full --no-half ``` ### 四、模型部署 1. 下载标准模型(如v1-5-pruned-emaonly.ckpt)至`models/Stable-diffusion`目录 2. 推荐使用显存优化参数: ```bat set COMMANDLINE_ARGS=--medvram --opt-sub-quad-attention ``` ### 常见问题处理 | 问题现象 | 解决方案 | |---------|---------| | `Torch not compiled with CUDA` | 确认使用`torch-directml`而非CUDA版本 | | 显存不足 | 添加`--lowvram`参数或减小图像尺寸 | | 黑图输出 | 检查模型hash值,更新xformers库 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值