TIGER - 一个轻量高效的语音分离模型,支持人声伴奏分离、音频说话人分离等 支持50系显卡 本地一键整合包下载

TIGER 是一种轻量级语音分离模型,通过频段分割、多尺度及全频帧建模有效提取关键声学特征。该项目由来自清华大学主导研发,通过频率带分割、多尺度以及全频率帧建模的方式,有效地提取关键声学特征,从而实现高效的语音分离。
TIGER 模型大小不到20M,即使CPU也可以流畅运行,且支持人声伴奏分离(音频文件中分离人声和伴奏)、音频说话人分离(从多个说话人音频中分离出每个说话人的声音)、视频降噪以及视频语音分离等功能。


应用领域 ‌

语音通信‌:在多人语音通信场景中,TIGER可以有效分离出各个说话人的声音,提高通话质量和清晰度。 ‌
智能语音识别‌:在智能家居、车载系统等智能语音识别应用中,TIGER能够帮助系统更准确地识别用户的指令,提升用户体验。 ‌
音频处理软件‌:作为音频处理软件中的一个组件,TIGER可以用于音频编辑、混音等场景,实现音频信号的精细分离和处理。 ‌
远程教育和会议‌:在远程教育和在线会议中,TIGER能够分离出各个参与者的声音,减少背景噪音和干扰,提高沟通效率。



使用教程:(CPU可流畅运行。建议N卡,显存4G起。支持50系显卡,基于CUDA12.8)

上传需要分离的音视频素材,提交即可。
注. 适用大部分音视频素材分离,但不保证所有复杂的场景都有好的效果。支持自定义素材模型训练

下载地址:点此下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值