POJ1986-LCA问题的在线离线两种算法

53 篇文章 1 订阅

在线算法:dfs+rmq

/*
这个版本的在线算法比自创的好看简洁多了,可以当模板,效率不高在于算法其本身的原因;
据说离线算法要快不少。
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;

const int NN=50000;

int n,rt;
vector<pair<int,int> > edge[NN];

int depth=0;
int bn=0,b[NN*2]; //深度序列
int f[NN*2];          //对应深度序列中的结点编号
int p[NN];             //结点在深度序列中的首位置
int dis[NN];          //结点到根的距离
void dfs(int u,int fa)
{
    int tmp=++depth;
    b[++bn]=tmp; f[tmp]=u; p[u]=bn;
    for (int i=0; i<edge[u].size(); i++)
    {
        int v=edge[u][i].first;
        if (v==fa) continue;
        dis[v]=dis[u]+edge[u][i].second;
        dfs(v,u);
        b[++bn]=tmp;
    }
}

int dp[NN*2][20];
void rmq_init(int n) //以深度序列做rmq
{
    for (int i=1; i<=n; i++) dp[i][0]=b[i];
    int m=floor(log(n*1.0)/log(2.0));
    for (int j=1; j<=m; j++)
      for (int i=1; i<=n-(1<<j)+1; i++)
          dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int rmq(int l,int r)
{
    int k=floor(log((r-l+1)*1.0)/log(2.0));
    return min(dp[l][k],dp[r-(1<<k)+1][k]);
}

int lca(int a,int b)
{
    if (p[a]>p[b]) swap(a,b);
    int k=rmq(p[a],p[b]);
    return f[k];
}

int main()
{
    int m,u,v,w;
    char str[4];
    scanf("%d%d",&n,&m);
    for (int i=1; i<=n; i++) edge[i].clear();
    while (m--)
    {
        scanf("%d%d%d%s",&u,&v,&w,str);
        edge[u].push_back(make_pair(v,w));
        edge[v].push_back(make_pair(u,w));
    }
    rt=1; dis[rt]=0;
    dfs(1,0);
    rmq_init(bn);
    scanf("%d",&m);
    while (m--)
    {
        scanf("%d%d",&u,&v);
        printf("%d\n",dis[u]+dis[v]-2*dis[lca(u,v)]);
    }
    return 0;
}

离线算法:dfs+并查集

/*
先写了LCA的在线算法,看网路上说离线比较快,又学着写了个离线算法,结果时间差不多~郁一闷~
看别个的离线代码和我的差不多,也没有其它优化,只不过我用的vector,它用的前向星,它的300+ms,我的1300+ms,又郁一闷~
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;

const int NN=100010;

int n,m;
vector<pair<int,int> > edge[NN],qe[NN];
vector<int> q1,q2;

int p[NN];
int find(int x)
{
    if (p[x]!=x) p[x]=find(p[x]);
    return p[x];
}

int sum=0,ans[NN],dis[NN];
bool vis[NN]={0};
void lca(int u,int fa)
{
    p[u]=u;
    for (int i=0; i<edge[u].size(); i++)
    {
        int v=edge[u][i].first;
        if (v==fa) continue;
        dis[v]=dis[u]+edge[u][i].second;
        lca(v,u);
        p[v]=u;
    }
    vis[u]=true;
    if (sum==m) return;
    for (int i=0; i<qe[u].size(); i++)
    {
        int v=qe[u][i].first;
        if (vis[v])
            ans[qe[u][i].second]=dis[u]+dis[v]-2*dis[find(v)];
    }
}

int main()
{
    int u,v,w;
    char str[4];
    scanf("%d%d",&n,&m);
    for (int i=1; i<=n; i++)
    {
        edge[i].clear();
    }
    for (int i=1; i<=m; i++)
    {
        scanf("%d%d%d%s",&u,&v,&w,str);
        edge[u].push_back(make_pair(v,w));
        edge[v].push_back(make_pair(u,w));
    }
    scanf("%d",&m);
    for (int i=0; i<m; i++)
    {
        scanf("%d%d",&u,&v);
        qe[u].push_back(make_pair(v,i));
        qe[v].push_back(make_pair(u,i));
        ans[i]=0;
    }
    dis[1]=0;
    lca(1,0);
    for (int i=0; i<m; i++) printf("%d\n",ans[i]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值