编程:最大公约数算法解析

转载自品略图书馆 http://www.pinlue.com/article/2019/11/1608/4210161138327.html

 

给定两个正整数,求其最大公约数,相信这是每一个写代码的同学绝壁遇见过的练习,当然解法也非常多,下面先给出一个没有经过任何算法处理的程序:

public static int getResult(int a,int b){

int max = (a>b)?a:b;

int result=0;

for(int i = 1;i < max;i++){

if(a%i == 0 && b%i == 0){

result=i;

}

}

return result;

}

这样当然是可以解出来的,但是要循环遍历其中较大的正整数,如果两个数量都非常大的话,效率是非常低的,每当遇到效率低下的程序,我们必然会想到优化,算法优化总是很靠谱的一种方法。下面就列出几种添加算法的方法来解决最大公约数的问题。

解法一:

辗转相除法,假设求正整数 num1,num2 的最大公约数,假设f(x,y)为两者的最大公约数,取 k = x / y (取整),b = x % y (取余);则 x = k y + b ;那么能同时被x ,y整除的数必然也同时能被 b , y 整除,能被b , y整除的数也能同时被x,y整除,也就是说,x,y的最大公约数就是b,y的最大公约数,则有 f (x , y) = f(y , x%y) (x>=y>0),这样递归运算,比如

f(42,30) = f(30,12) = f(12 , 6) = f(6,0) = 6; 这样将运算次数直接降低了很多。下面附上代码:

int result = ((y == 0) ? x : gcd(y, x % y));

return result;

}

解法二:

解法一虽然很好的解决了求公约数的问题,但是算法中包含有除法,在计算机中除法的开销是很大的,能不能不用除法呢。可以这样考虑,一个数能被x , y整出,必然也能被x-y,y整出,也就是一个数被x,y整出是这个数被x-y,y整出的充分必要条件。那么f(x, y) = f(x-y , y);这样计算的话,就可以把大整数之间的取模运算转换为大整数之间的减法运算。由于f(x,y)= f(y,x),为了避免求出一个正数和一个负数的最大公约数,要灵活运用f(x,y)= f(y,x),迭代进行,直到一方为0;比如:

f(42,30) = f(30,12) = f(18 , 12)= f(12 , 6) = f(6,6)= f(6 , 0) = 6;这样运算跟上面的方法比起来,优化了大数据取模的问题,但是运算次数会增大,代码如下:

private static int gcd(int x, int y) {

if (y == 0) {

return x;

}

if (x < y) {

return gcd(y, x);

} else {

return gcd(x - y, y);

}

}

解法三:

解法一的不足之处在于复杂的大数据除法运算,解法二虽然干掉了大数据的除法运算,但是增加了操作次数。两种方法都不是非常的完美,那么我们就用第三种方法来解决,第三种方法使用的二进制方案,估计很多同学看到01100100就要放弃了,千万不要,其实这东西不难。

对于x,y来说,有x=k * x1,y = k * y1 ,则f(x ,y) = f(k * x1,k * y1) = k * f(x1 ,y1);此为一。

另外,如果 x = p * x1,且p为素数,y%p != 0,则f(x ,y)= f(p * x1, y) = f(x1 ,y);此为二。

由一和二两个公式,我们可以计算公约数了:

设p=2:

假设x,y都是偶数:f(x,y)= 2f(x?1,y?1);

假设x是偶数,y是奇数:f(x,y) = f(x?1,y);

假设x是奇数,y是偶数:f(x,y) = f(x,y?1);

假设x,y都是奇数:f(x,y) = f(y,x-y);—这是根据解法二中推出来的

下面还以42 和 30 为例:

f(42,30) = f(101010,11110) = 2f(10101,1111) = 2f(1111,110)=2 * f(1111,11) = 2 f (1100,11) = 2f(110,11)=2 f(11,11) = 2 f(0,11) = 2 3=6

括号中均为二进制表达,这样最坏的情况下,复杂度也就是log 2(max(x,y));—-2是底数,尼玛,这格式弄不出来。

下面附上代码:

if (x < y) {

return gcd(y, x);

}

if (y == 0) {

return x;

}

if (isEven(x)) {

if (isEven(y)) {

// x,y都为偶数,f(x,y)=2*f(x/2,y/2)

return gcd(x >> 1, y >> 1) << 1;

} else {

// x偶数,y奇数,f(x,y)=f(x/2,y)

return gcd(x >> 1, y);

}

} else {

if (isEven(y)) {

// x奇数,y偶数,f(x,y)=2*f(x,y/2)

return gcd(x, y >> 1);

} else {

// x,y都为奇数,f(x,y)=f(x-y,y)

return gcd(x - y, y);

}

}

}

public static boolean isEven(int x) {

return (x % 2 == 0) ? true : false;

}

以前根本没有想过这么些玩意,第一次看算法,顿时感觉高大上啊,不过的确,看到这样解决以前常用来解决的公约数问题,的确眼前一亮啊

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值