从牛顿-莱布尼兹公式到变限积分求导

本文介绍了牛顿-莱布尼兹公式的基础及其在变限积分求导中的应用。当函数f(x)在区间[a,b]连续并存在原函数时,牛顿-莱布尼兹公式表明F(x)=∫abf(x)dx。对于变限积分求导,可以将h(x)和g(x)视为常数,利用原函数求得d(∫h(x)g(x)f(t)dt)/dx=f[g(x)]g'(x)−f[h(x)]h'(x)。" 135324547,10137110,气象预报与计算机技术:深度融合与未来,"['人工智能', '气象科学', '数据处理', '云计算', '物联网']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

牛顿-莱布尼兹公式

如果函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]连续,并且存在原函数 F ( x ) F(x) F(x),则 F ( x ) = ∫ a b f ( x ) d x   . F(x) = \int_a^b f(x)dx\,. F(x)=abf(x)dx.
弱化条件
如果函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值