20230422模拟赛总结

更好的阅读体验

T1

大意:已知形如
( x − a 1 ) b 1 × ( x − a 2 ) b 2 × ( x − a 3 ) b 3 × ⋯ × ( x − a n ) b n < 0 (x-a_1)^{b_1}\times (x-a_2)^{b_2}\times (x-a_3)^{b_3}\times \dots \times(x-a_n)^{b_n}<0 (xa1)b1×(xa2)b2×(xa3)b3××(xan)bn<0
的不等式,给出长度为 n n n a a a b b b两个数组,求满足该不等式的解集。
无解输出NO ANSWER

MIND

赛时

既然偶次幂的结果一定 ≥ 0 \ge0 0(注意后面要考),所以我们可以先不管偶次幂,把奇次幂的 a i a_i ai提出来放进一个新数组 c u r [    ] cur[\;] cur[]里,然后再进行升序排序,最后类似在数轴上确定。只是要判断一下结果为负的幂的数量为奇即可。

赛后

听了出题人讲完后,不是很理解穿根法。所以我在想我赛时思路为什么挂了。

“既然偶次幂的结果一定 ≥ 0 \ge0 0……”

是的。偶次幂的结果不能为 0 0 0,否则整个不等式左边为 0 0 0,不等式明显不成立。而我代码中就对偶次幂没有任何处理,所以挂了。所以我们还要判断一下偶次幂不能为 0 0 0

CODE

#include<bits/stdc++.h>
using namespace std;

#define ll long long
#define rp(i,o,p) for(ll i=o;i<=p;++i)
#define pr(i,o,p) for(ll i=o;i>=p;--i)

const ll MAXN=1e5+5,INF=1e16;

ll n;
ll ter[MAXN];
ll ans,tl;
pair<ll,ll> Ans[MAXN],a[MAXN];
struct node
{
    ll num,ix;
}cur[MAXN];

bool cmp(node aa,node bb)
{
    if(aa.num!=bb.num)
        return aa.num<bb.num;
    return aa.ix<bb.ix;
}

bool cnp(pair<ll,ll> aa,pair<ll,ll> bb)
{
    if(aa.first!=bb.first)
        return aa.first<bb.first;
    return aa.second<bb.second;
}

int main()
{
    scanf("%lld",&n);
    rp(i,1,n) scanf("%lld",&a[i].first);
    rp(i,1,n) scanf("%lld",&a[i].second);
    bool isok=0;
    rp(i,1,n) if(a[i].second&1) isok=1;

    if(!isok)
        return puts("NO ANSWER"),0;
    sort(a+1,a+n+1,cnp);
    ll hd=0;
    rp(i,1,n)
    {
        if(a[i].second&1)
        {
            cur[++hd]={a[i].first,i};
        }
        else
        {
            ter[++tl]=a[i].first;
        }
    }

    sort(cur+1,cur+hd+1,cmp);
    sort(ter+1,ter+tl+1);

    if(hd&1)
    {
        a[0].first=-INF;
        rp(j,0,cur[1].ix-1)
        {
            Ans[++ans].first=a[j].first;
            Ans[ans].second=a[j+1].first;
        }
        for(ll i=3;i<=hd;i+=2)
        {
            rp(j,cur[i-1].ix,cur[i].ix-1)
            {
                Ans[++ans].first=a[j].first;
                Ans[ans].second=a[j+1].first;
            }
        }
    }
    else
    {
        for(ll i=2;i<=hd;i+=2)
        {
            rp(j,cur[i-1].ix,cur[i].ix-1)
            {
                Ans[++ans].first=a[j].first;
                Ans[ans].second=a[j+1].first;
            }
        }
    }

    if(!ans)
        puts("NO ANSWER");
    else
    {
        printf("%lld\n",ans);
        rp(i,1,ans)
        {
            if(Ans[i].first==-INF)
                printf("-INF<");
            else
                printf("%lld<",Ans[i].first);
            printf("x<%lld\n",Ans[i].second);
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值