2021书单总结

看了下时间,上次在CSDN上写博客是还是在年初,转眼都快一年过去了....,今年大部分时间都在极客专栏和Medium中阅读相关的专栏,进一步夯实计算机基础知识,此外还有各领域相关的算法&大数据应用方面的,以及一些其他思维认知读物等,在这里做个书单总结,一些比较好的,会安利一波....

        首先,我将书单分为4类,分别为:专业技术、行业总结、思维认知、其他读物,并附上推荐指数。

分类书名推荐指数
专业技术操作系统导论* * * * *
Effective Python* * * * *
Architecture Patterns with Python* * * * *
编写整洁的 Python* * * * *
Pytorch 深度学习* * * *
图表示学习* * * 
计算广告* * * * *
软件架构设计* * * * 
AutoML* * * * *
集体智慧编程* * * *
数据中台* * * * *
算法与数据中台* * * * *
阿里云天池大赛赛题解析* * * * *
行业总结这就是软件工程师* * * * 
供应链金融* * * * *
SAAS商业实战* * * * *
商业数据分析* * * * *
AI未来* * * * *
新零售:《低价高效的数据赋能之路》* * * * 
互联网思维* * * * 
思维认知认知红利* * * * *
跃迁* * * * *
拆掉思维里的墙* * * * *
金字塔原理* * * * *
其他读物人间值得* * * * *
人生由我* * * * *
平均分* * * * 
邓小平时代* * * * *
亲爱的安德烈* * * * *
世界是红的* * * *
创业在路上* * * 
简明美国史* * * *

考虑到行业所属不同,行业总结类的书籍可能没有参考价值,因此这里推荐书籍只列出专业类的数据推荐清单,供于参考.

1:《操作系统导论》 推荐指数  * * * * *

        这本书主要围绕虚拟化、并发和持久化展开介绍,并且包括现代系统的主要组件,文风诙谐幽默,由浅入深。在实际工作中,虽然工作中,绝大多数岗位并非需要涉及这些底层计算机知识,但掌握这些操作系统知识,无疑会加深我们对计算机的理解,也许真的某一天遇到特定的问题,相信会更加游刃有余的处理。

2:《Effective Python》 推荐指数  * * * * *

        如果用一句话总结这本书,那就是:用Pythonic的方式来思考,主要是关于Python的细节用法方面,书本中强调代码规范性和简洁性,书中处理问题采用的方法,经常会有种眼前一亮的感觉,如类与对象行为,元类和动态属性等,此外,书中还讲到程序性能的调试与优化方案。整本书读完最大的感受就是:能写成Class就尽量别写成function,看自己的之前写的程序,又臭又长(打脸....)

3:《Architecture Patterns with Python》 推荐指数  * * * * *        

        这本书是关于python软件架构方面的,里面涉及到很多实战的案例,主要讲述利用Python实现驱动设计及架构,涉及到的技术概念比较多。这本书对于提升认知挺好的,后续还得再拜读一遍。

4:《编写整洁的 Python》 推荐指数  * * * * *

        这本书与Effective Python》有点异曲同工之美,关于注重细节实现的整洁。如果工作中,团队有Code Review制度的话,这本书值得入手!

5:《Pytorch 深度学习》 推荐指数  * * * *

        之前再用深度学习做时空预测,看到的paper和拉取的github都是基于Potorch 实现的,当时看这本书的目的是作为技术手册,这本书总体感觉基础内容较多,讲解的比较全面,适合Pytorch入门。

6:《图表示学习》 推荐指数  * * * 

        这本书的翻译一言难尽,还不如直接读paper,看了一半放弃了,直接去看公开课了,无奈推荐指数只给它3分....

7:《计算广告》 推荐指数  * * * * *

        互联网广告方面的话题,非专业领域可以作为延伸阅读,了解计算广告有效性原理和算法实现细节,如点击率预测等,实现思路可以借鉴,可以用来处理稀疏数据等,其他还涉及到大数据组件的利用,如离线特征和实时特征处理存储等。

8:《软件架构设计》 推荐指数  * * * * *

        架构涉及到本质,是对问题域空间的反复演绎和抽象归纳方法,核心的高可用、稳定性、可拓展性是绕不开的话题。书中的重点内容列举了大量的案例和图片,便于理解,对于工程师的成长有一定的借鉴作用。

9:《AutoML》 推荐指数  * * * * *

        Frank & Hutter 编写的,可能是翻译的原因吧,读起来有点不习惯,但总体而言,讲解的比较详细,介绍了各种可用的AutoML系统,书中还介绍了利用AutoML实现的数据挑战赛等案例。可以作为理念参考,从而设计自己的AutoML系统

10:《集体智慧编程》 推荐指数  * * * * 

        这本书是以机器学习与计算统计为主题,讲述Web数据如何挖掘和分析,感觉讲解的比较宽泛,不够细致,更适合Web开发者和架构师。

11:《数据中台》 推荐指数  * * * * 

        这本书系统全面的讲解了数据中台的搭建和管理方面,读起来感觉主要是方法论方面的建设,结合所在部门已有技术栈及业务,值得借鉴和参考。

12:《算法与数据中台》 推荐指数  * * * * 

        这本书结合一流互联网公司实际案例,从算法和数据技术方案,介绍了中台的建设,这本书结合了机器学习&深度学习,以及分布式大数据方面的知识,一方面,中台的建设经验值得借鉴,另一方面也可以加深对上述技术的理解和应用。

13:《阿里云天池大赛赛题解析》 推荐指数  * * * * 

        买这本书的目的,是为了借鉴特征工程处理思路的(手动狗头...),很多数据处理、特征衍生逻辑可以借鉴、复制,书中还详细介绍了代码实现细节,可作为日常建模工作中的一份参考手册。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值