Scrapy-Redis入门实战

目录

简介

Scrapy-Redis特性

Scrapy-Redis示例

开发环境

创建项目

定义Item

创建Spider

修改配置

启动爬虫


简介

scrapy-redis是一个基于redis的scrapy组件,用于快速实现scrapy项目的分布式部署和数据爬取,其运行原理如下图所示。

Scrapy-Redis特性

分布式爬取

你可以启动多个共享同一redis队列的爬虫实例,多个爬虫实例将各自提取到或者已请求的Requests在队列中统一进行登记,使得Scheduler在请求调度时能够对重复Requests进行过滤,即保证已经由某一个爬虫实例请求过的Request将不会再被其他的爬虫实例重复请求。

分布式数据处理

将scrapy爬取到的items汇聚到同一个redis队列中,意味着你可以根据你的需要启动尽可能多的共享这个items队列的后处理程序。

Scrapy即插即用组件

Scheduler调度器 + Duplication重复过滤器、Item Pipeline、基础Spider爬虫

Scrapy-Redis示例

本文将以爬取京东所有图书分类下的图书信息为例对Scrapy-Redis的用法进行示例。

开发环境

  • Python 3.7
  • Redis 3.2.100

下面列举出了 Python 中 Scrapy-Redis 所需要的各个模块及其版本:

  • redis 2.10.6
  • redis-py-cluster 1.3.6
  • scrapy-redis 0.6.8
  • scrapy-redis-cluster 0.4

在开发之前需要先安装好以上模块,以scrapy-redis-cluster模块为例,使用pip进行安装的命令如下:


   
   
  1. pip install scrapy-redis-cluster # 安装模块
  2. pip install scrapy-redis-cluster== 0.4 # 安装模块时指定版本
  3. pip install --upgrade scrapy-redis-cluster # 升级模块版本

创建项目

在Windows命令行执行如下命令完成项目创建:

d:\scrapy>scrapy startproject jd_book
   
   

执行完该命令后,将会在当前目录下创建包含下列内容的 jd_book 目录:

定义Item

在items.py中把我们将要爬取的图书字段预先定义好。


   
   
  1. # -*- coding: utf-8 -*-
  2. import scrapy
  3. class JdBookItem(scrapy.Item):
  4. b_cate = scrapy.Field() # 图书所属一级分类名称
  5. s_cate = scrapy.Field() # 图书所属二级分类名称
  6. s_href = scrapy.Field() # 图书所属二级分类地址
  7. book_name = scrapy.Field() # 名称
  8. book_img = scrapy.Field() # 封面图片地址
  9. book_author = scrapy.Field() # 作者
  10. book_press = scrapy.Field() # 出版社
  11. book_publish_date = scrapy.Field() # 出版日期
  12. book_sku = scrapy.Field() # 商品编号
  13. book_price = scrapy.Field() # 价格

创建Spider

在Windows命令行执行如下命令完成Spider创建:


   
   
  1. d:\scrapy\jd_book> cd jd_book
  2. d:\scrapy\jd_book>scrapy genspider jdbook jd.com

执行完该命令后,将会在 jd_book 的 spiders 目录下生成一个 jdbook.py 文件 :

 jdbook.py的完整爬虫代码如下。


   
   
  1. # -*- coding: utf-8 -*-
  2. import scrapy
  3. import json
  4. import urllib
  5. from copy import deepcopy
  6. from jd_book.items import JdBookItem
  7. class JdbookSpider(scrapy.Spider):
  8. name = 'jdbook'
  9. allowed_domains = [ 'jd.com', '3.cn']
  10. start_urls = [ 'https://book.jd.com/booksort.html']
  11. def parse( self, response): # 处理图书分类页
  12. dt_list = response.xpath( "//div[@class='mc']/dl/dt") # 提取一级分类元素
  13. for dt in dt_list:
  14. item = JdBookItem()
  15. item[ "b_cate"] = dt.xpath( "./a/text()").extract_first() # 提取一级分类名称
  16. em_list = dt.xpath( "./following-sibling::dd[1]/em") # 提取二级分类元素
  17. for em in em_list:
  18. item[ "s_cate"] = em.xpath( "./a/text()").extract_first() # 提取二级分类名称
  19. item[ "s_href"] = em.xpath( "./a/@href").extract_first() # 提取二级分类地址
  20. if item[ "s_href"] is not None:
  21. item[ 's_href'] = "https:" + item[ 's_href'] # 补全二级分类地址
  22. yield scrapy.Request(item[ 's_href'], callback=self.parse_book_list, meta={ "item": deepcopy(item)})
  23. def parse_book_list( self, response): # 处理二级分类下图书列表页
  24. item = response.meta[ 'item']
  25. li_list = response.xpath( "//div[@id='plist']/ul/li") # 提取所有的图书元素
  26. for li in li_list:
  27. item[ "book_img"] = li.xpath( ".//div[@class='p-img']//img/@data-lazy-img").extract_first()
  28. if item[ "book_img"] is None:
  29. item[ "book_img"] = li.xpath( ".//div[@class='p-img']//img/@src").extract_first()
  30. if item[ "book_img"] is not None:
  31. item[ "book_img"] = "https:"+item[ "book_img"]
  32. item[ "book_name"] = li.xpath( ".//div[@class='p-name']/a/em/text()").extract_first().strip()
  33. item[ "book_author"] = li.xpath( ".//span[@class='author_type_1']/a/text()").extract()
  34. item[ "book_press"] = li.xpath( ".//span[@class='p-bi-store']/a/@title").extract_first()
  35. item[ "book_publish_date"] = li.xpath( ".//span[@class='p-bi-date']/text()").extract_first().strip()
  36. item[ "book_sku"] = li.xpath( "./div/@data-sku").extract_first()
  37. price_url = "https://p.3.cn/prices/mgets?skuIds=j_{}". format(item[ "book_sku"]) # 提取图书价格请求地址
  38. yield scrapy.Request(price_url, callback=self.parse_book_price, meta={ "item": deepcopy(item)})
  39. # 提取列表页下一页地址
  40. next_url = response.xpath( "//a[@class='pn-next']/@href").extract_first()
  41. if next_url is not None:
  42. next_url = urllib.parse.urljoin(response.url, next_url)
  43. # yield scrapy.Request(next_url,callback=self.parse_book_list,meta={"item":item})
  44. def parse_book_price( self, response):
  45. item = response.meta[ 'item']
  46. item[ "book_price"] = json.loads(response.body.decode())[ 0][ "op"]
  47. yield item

修改配置

在settings.py 中增加Scrapy-Redis相关配置。


   
   
  1. # -*- coding: utf-8 -*-
  2. BOT_NAME = 'jd_book'
  3. SPIDER_MODULES = [ 'jd_book.spiders']
  4. NEWSPIDER_MODULE = 'jd_book.spiders'
  5. # Crawl responsibly by identifying yourself (and your website) on the user-agent
  6. USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36'
  7. # Obey robots.txt rules
  8. ROBOTSTXT_OBEY = False
  9. ######################################################
  10. ##############下面是Scrapy-Redis相关配置################
  11. ######################################################
  12. # 指定Redis的主机名和端口
  13. REDIS_HOST = 'localhost'
  14. REDIS_PORT = 6379
  15. # 调度器启用Redis存储Requests队列
  16. SCHEDULER = "scrapy_redis.scheduler.Scheduler"
  17. # 确保所有的爬虫实例使用Redis进行重复过滤
  18. DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
  19. # 将Requests队列持久化到Redis,可支持暂停或重启爬虫
  20. SCHEDULER_PERSIST = True
  21. # Requests的调度策略,默认优先级队列
  22. SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'
  23. # 将爬取到的items保存到Redis 以便进行后续处理
  24. ITEM_PIPELINES = {
  25. 'scrapy_redis.pipelines.RedisPipeline': 300
  26. }

启动爬虫

至此京东图书项目就算配置完成了,你可以将项目部署到多台服务器中去,并使用如下命令来启动爬虫:

 

d:\scrapy\jd_book>scrapy crawl jdbook
   
   

爬取到的图书数据结构如下:

相应地,在Redis数据库中同时生成了如下3个键:

其中,jdbook:requests 中保存了待爬取的Request对象;jdbook:dupefilter 中保存了已经爬取过的Request对象的指纹;jdbook:items中保存了爬取到的Item对象。

 通过上述京东图书项目不难看出,scrapy-redis项目与普通的scrapy项目相比,除了在settings.py配置时额外增加了一些scrapy-redis的专属配置外,其他环节完全相同。

参考文章

 https://scrapy-redis.readthedocs.io/en/stable/index.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值