转自两矩阵各向量余弦相似度计算操作向量化.md - 苏轶然 - 博客园 (cnblogs.com)https://www.cnblogs.com/suanec/p/9121092.html
对A,B矩阵相乘做了略微修改
### 矩阵矢量化操作
### 按行计算余弦相似度
### 两矩阵计算相似度向量应为同维度
### 返回值RES为A矩阵每行对B矩阵每行向量余弦值
### RES[i,j] 表示A矩阵第i行向量与B矩阵第j行向量余弦相似度
import numpy as np
def cosine_Matrix(_matrixA, _matrixB):
import numpy
_matrixA_matrixB = np.dot(_matrixA, _matrixB.transpose())
### 按行求和,生成一个列向量
### 即各行向量的模
_matrixA_norm = numpy.sqrt(numpy.multiply(_matrixA,_matrixA).sum(axis=1))
_matrixB_norm = numpy.sqrt(numpy.multiply(_matrixB,_matrixB).sum(axis=1))
return numpy.divide(_matrixA_matrixB, _matrixA_norm * _matrixB_norm.transpose())
### 向量计算余弦相似度
### 计算两向量余弦相似度
### 返回_vec1和_vec2余弦相似度
### 此处用于计算向量余弦相似度,验证矩阵相似度计算结果
def cosine(_vec1, _vec2):
import numpy
return float(numpy.sum(_vec1*_vec2))/(numpy.linalg.norm(_vec1)*numpy.linalg.norm(_vec2))