导入
Hive的几种常见的数据导入方式
这里介绍四种:
(1)、从本地文件系统中导入数据到Hive表;
(2)、从HDFS上导入数据到Hive表;
(3)、从别的表中查询出相应的数据并导入到Hive表中;
(4)、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中。
一、从本地文件系统中导入数据到Hive表
先在Hive里面创建好表,如下:
- hive> create table wyp
- > (id int, name string,
- > age int, tel string)
- > ROW FORMAT DELIMITED
- > FIELDS TERMINATED BY '\t'
- > STORED AS TEXTFILE;
- OK
- Time taken: 2.832 seconds
复制代码
这个表很简单,只有四个字段,具体含义我就不解释了。本地文件系统里面有个/home/wyp/wyp.txt文件,内容如下:
- [wyp@master ~]$ cat wyp.txt
- 1 wyp 25 13188888888888
- 2 test 30 13888888888888
- 3 zs 34 899314121
复制代码
wyp.txt文件中的数据列之间是使用\t分割的,可以通过下面的语句将这个文件里面的数据导入到wyp表里面,操作如下:
- hive> load data local inpath 'wyp.txt' into table wyp;
- Copying data from file:/home/wyp/wyp.txt
- Copying file: file:/home/wyp/wyp.txt
- Loading data to table default.wyp
- Table default.wyp stats:
- [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 67]
- OK
- Time taken: 5.967 seconds
复制代码
这样就将wyp.txt里面的内容导入到wyp表里面去了,可以到wyp表的数据目录下查看,如下命令:
- hive> dfs -ls /user/hive/warehouse/wyp ;
- Found 1 items
- -rw-r--r--3 wyp supergroup 67 2014-02-19 18:23 /hive/warehouse/wyp/wyp.txt
复制代码
需要注意的是:
和我们熟悉的关系型数据库不一样,Hive现在还不支持在insert语句里面直接给出一组记录的文字形式,也就是说,Hive并不支持INSERT INTO …. VALUES形式的语句。
二、HDFS上导入数据到Hive表
从本地文件系统中将数据导入到Hive表的过程中,其实是先将数据临时复制到HDFS的一个目录下(典型的情况是复制到上传用户的HDFS home目录下,比如/home/wyp/),然后再将数据从那个临时目录下移动(注意,这里说的是移动,不是复制!)到对应的Hive表的数据目录里面。既然如此,那么Hive肯定支持将数据直接从HDFS上的一个目录移动到相应Hive表的数据目录下,假设有下面这个文件/home/wyp/add.txt,具体的操作如下:
- [wyp@master /home/q/hadoop-2.2.0]$ bin/hadoop fs -cat /home/wyp/add.txt
- 5 wyp1 23 131212121212
- 6 wyp2 24 134535353535
- 7 wyp3 25 132453535353
- 8 wyp4 26 154243434355
复制代码
上面是需要插入数据的内容,这个文件是存放在HDFS上/home/wyp目录(和一中提到的不同,一中提到的文件是存放在本地文件系统上)里面,我们可以通过下面的命令将这个文件里面的内容导入到Hive表中,具体操作如下:
- hive> load data inpath '/home/wyp/add.txt' into table wyp;
- Loading data to table default.wyp
- Table default.wyp stats:
- [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 215]
- OK
- Time taken: 0.47 seconds
-
- hive> select * from wyp;
- OK
- 5 wyp1 23 131212121212
- 6 wyp2 24 134535353535
- 7 wyp3 25 132453535353
- 8 wyp4 26 154243434355
- 1 wyp 25 13188888888888
- 2 test 30 13888888888888
- 3 zs 34 899314121
- Time taken: 0.096 seconds, Fetched: 7 row(s)
复制代码
从上面的执行结果我们可以看到,数据的确导入到wyp表中了!请注意load data inpath ‘/home/wyp/add.txt’ into table wyp;里面是没有local这个单词的,这个是和一中的区别。
三、从别的表中查询出相应的数据并导入到Hive表中
假设Hive中有test表,其建表语句如下所示:
- hive> create table test(
- > id int, name string
- > ,tel string)
- > partitioned by
- > (age int)
- > ROW FORMAT DELIMITED
- > FIELDS TERMINATED BY '\t'
- > STORED AS TEXTFILE;
- OK
- Time taken: 0.261 seconds
复制代码
大体和wyp表的建表语句类似,只不过test表里面用age作为了分区字段。对于分区,这里在做解释一下:
分区:在Hive中,表的每一个分区对应表下的相应目录,所有分区的数据都是存储在对应的目录中。比如wyp表有dt和city两个分区,则对应dt=20131218,city=BJ对应表的目录为/user/hive/warehouse/dt=20131218/city=BJ,所有属于这个分区的数据都存放在这个目录中。
下面语句就是将wyp表中的查询结果并插入到test表中:
- hive> insert into table test
- > partition (age='25')
- > select id, name, tel
- > from wyp;
- #####################################################################
- 这里输出了一堆Mapreduce任务信息,这里省略
- #####################################################################
- Total MapReduce CPU Time Spent: 1 seconds 310 msec
- OK
- Time taken: 19.125 seconds
-
- hive> select * from test;
- OK
- 5 wyp1 131212121212 25
- 6 wyp2 134535353535 25
- 7 wyp3 132453535353 25
- 8 wyp4 154243434355 25
- 1 wyp 13188888888888 25
- 2 test 13888888888888 25
- 3 zs 899314121 25
- Time taken: 0.126 seconds, Fetched: 7 row(s)
复制代码
这里做一下说明:
我们知道我们传统数据块的形式insert into table values(字段1,字段2),这种形式hive是不支持的。
通过上面的输出,我们可以看到从wyp表中查询出来的东西已经成功插入到test表中去了!如果目标表(test)中不存在分区字段,可以去掉partition (age=’25′)语句。当然,我们也可以在select语句里面通过使用分区值来动态指明分区:
- hive> set hive.exec.dynamic.partition.mode=nonstrict;
- hive> insert into table test
- > partition (age)
- > select id, name,
- > tel, age
- > from wyp;
- #####################################################################
- 这里输出了一堆Mapreduce任务信息,这里省略
- #####################################################################
- Total MapReduce CPU Time Spent: 1 seconds 510 msec
- OK
- Time taken: 17.712 seconds
-
-
- hive> select * from test;
- OK
- 5 wyp1 131212121212 23
- 6 wyp2 134535353535 24
- 7 wyp3 132453535353 25
- 1 wyp 13188888888888 25
- 8 wyp4 154243434355 26
- 2 test 13888888888888 30
- 3 zs 899314121 34
- Time taken: 0.399 seconds, Fetched: 7 row(s)
复制代码
这种方法叫做动态分区插入,但是Hive中默认是关闭的,所以在使用前需要先把hive.exec.dynamic.partition.mode设置为nonstrict。当然,Hive也支持insert overwrite方式来插入数据,从字面我们就可以看出,overwrite是覆盖的意思,是的,执行完这条语句的时候,相应数据目录下的数据将会被覆盖!而insert into则不会,注意两者之间的区别。例子如下:
- hive> insert overwrite table test
- > PARTITION (age)
- > select id, name, tel, age
- > from wyp;
复制代码
更可喜的是,Hive还支持多表插入,什么意思呢?在Hive中,我们可以把insert语句倒过来,把from放在最前面,它的执行效果和放在后面是一样的,如下:
- hive> show create table test3;
- OK
- CREATE TABLE test3(
- id int,
- name string)
- Time taken: 0.277 seconds, Fetched: 18 row(s)
-
- hive> from wyp
- > insert into table test
- > partition(age)
- > select id, name, tel, age
- > insert into table test3
- > select id, name
- > where age>25;
-
- hive> select * from test3;
- OK
- 8 wyp4
- 2 test
- 3 zs
- Time taken: 4.308 seconds, Fetched: 3 row(s)
复制代码
可以在同一个查询中使用多个insert子句,这样的好处是我们只需要扫描一遍源表就可以生成多个不相交的输出。这个很酷吧!
四、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中
在实际情况中,表的输出结果可能太多,不适于显示在控制台上,这时候,将Hive的查询输出结果直接存在一个新的表中是非常方便的,我们称这种情况为CTAS(create table .. as select)如下:
- hive> create table test4
- > as
- > select id, name, tel
- > from wyp;
-
- hive> select * from test4;
- OK
- 5 wyp1 131212121212
- 6 wyp2 134535353535
- 7 wyp3 132453535353
- 8 wyp4 154243434355
- 1 wyp 13188888888888
- 2 test 13888888888888
- 3 zs 899314121
- Time taken: 0.089 seconds, Fetched: 7 row(s)
复制代码
数据就插入到test4表中去了,CTAS操作是原子的,因此如果select查询由于某种原因而失败,新表是不会创建的!
导出
今天我们再谈谈Hive中的三种不同的数据导出方式。
根据导出的地方不一样,将这些方式分为三种:
(1)、导出到本地文件系统;
(2)、导出到HDFS中;
(3)、导出到Hive的另一个表中。
为了避免单纯的文字,我将一步一步地用命令进行说明。
一、导出到本地文件系统
-
- hive> insert overwrite local directory '/home/wyp/wyp'
- > select * from wyp;
复制代码
这条HQL的执行需要启用Mapreduce完成,运行完这条语句之后,将会在本地文件系统的/home/wyp/wyp目录下生成文件,这个文件是Reduce产生的结果(这里生成的文件名是000000_0),我们可以看看这个文件的内容:
- [wyp@master ~/wyp]$ vim 000000_0
- 5^Awyp1^A23^A131212121212
- 6^Awyp2^A24^A134535353535
- 7^Awyp3^A25^A132453535353
- 8^Awyp4^A26^A154243434355
- 1^Awyp^A25^A13188888888888
- 2^Atest^A30^A13888888888888
- 3^Azs^A34^A899314121
复制代码
可以看出,这就是wyp表中的所有数据。数据中的列与列之间的分隔符是^A(ascii码是\00001)。
和导入数据到Hive不一样,不能用insert into来将数据导出:
-
- hive> insert into local directory '/home/wyp/wyp'
- > select * from wyp;
- NoViableAltException(79@[])
- at org.apache.hadoop.hive.ql.parse.HiveParser_SelectClauseParser.selectClause(HiveParser_SelectClauseParser.java:683)
- at org.apache.hadoop.hive.ql.parse.HiveParser.selectClause(HiveParser.java:30667)
- at org.apache.hadoop.hive.ql.parse.HiveParser.regular_body(HiveParser.java:28421)
- at org.apache.hadoop.hive.ql.parse.HiveParser.queryStatement(HiveParser.java:28306)
- at org.apache.hadoop.hive.ql.parse.HiveParser.queryStatementExpression(HiveParser.java:28100)
- at org.apache.hadoop.hive.ql.parse.HiveParser.execStatement(HiveParser.java:1213)
- at org.apache.hadoop.hive.ql.parse.HiveParser.statement(HiveParser.java:928)
- at org.apache.hadoop.hive.ql.parse.ParseDriver.parse(ParseDriver.java:190)
- at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:418)
- at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:337)
- at org.apache.hadoop.hive.ql.Driver.run(Driver.java:902)
- at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:259)
- at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:216)
- at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:413)
- at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:756)
- at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:614)
- at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
- at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
- at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
- at java.lang.reflect.Method.invoke(Method.java:597)
- at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
- FAILED: ParseException line 1:12 missing TABLE at 'local' near 'local' in select clause
- line 1:18 cannot recognize input near 'directory' ''/home/wyp/wyp'' 'select' in select clause
复制代码
二、导出到HDFS中
和导入数据到本地文件系统一样的简单,可以用下面的语句实现:
-
- hive> insert overwrite directory '/home/wyp/hdfs'
- > select * from wyp;
复制代码
将会在HDFS的/home/wyp/hdfs目录下保存导出来的数据。注意,和导出文件到本地文件系统的HQL少一个local,数据的存放路径就不一样了。
三、导出到Hive的另一个表中
这也是Hive的数据导入方式,如下操作:
-
- hive> insert into table test
- > partition (age='25')
- > select id, name, tel
- > from wyp;
- #####################################################################
- 这里输出了一堆Mapreduce任务信息,这里省略
- #####################################################################
- Total MapReduce CPU Time Spent: 1 seconds 310 msec
- OK
- Time taken: 19.125 seconds
-
- hive> select * from test;
- OK
- 5 wyp1 131212121212 25
- 6 wyp2 134535353535 25
- 7 wyp3 132453535353 25
- 8 wyp4 154243434355 25
- 1 wyp 13188888888888 25
- 2 test 13888888888888 25
- 3 zs 899314121 25
- Time taken: 0.126 seconds, Fetched: 7 row(s)
复制代码
细心的读者可能会问,怎么导入数据到文件中,数据的列之间为什么不是wyp表设定的列分隔符呢?其实在Hive 0.11.0版本之间,数据的导出是不能指定列之间的分隔符的,只能用默认的列分隔符,也就是上面的^A来分割,这样导出来的数据很不直观,看起来很不方便!
如果你用的Hive版本是0.11.0,那么你可以在导出数据的时候来指定列之间的分隔符。
下面详细介绍:
在Hive0.11.0版本新引进了一个新的特性,也就是当用户将Hive查询结果输出到文件,用户可以指定列的分割符,而在之前的版本是不能指定列之间的分隔符,这样给我们带来了很大的不变,在Hive0.11.0之前版本我们一般是这样用的:
- hive> insert overwrite local directory '/home/wyp/Documents/result'
- hive> select * from test;
-
复制代码
保存的文件列之间是用^A(\x01)来分割
- 196^A242^A3
- 186^A302^A3
- 22^A377^A1
- 244^A51^A2
复制代码
注意,上面是为了显示方便,而将\x01写作^A,在实际的文本编辑器我们是看不到^A的,而是一个奇怪的符号。
现在我们可以用Hive0.11.0版本新引进了一个新的特性,指定输出结果列之间的分隔符:
- hive> insert overwrite local directory '/home/wyp/Documents/result'
- hive> row format delimited
- hive> fields terminated by '\t'
- hive> select * from test;
复制代码
再次看出输出的结果
- 196 242 3
- 186 302 3
- 22 377 1
- 244 51 2
复制代码
结果好看多了。如果是map类型可以用下面语句来分割map的key和value
- hive> insert overwrite local directory './test-04'
- hive> row format delimited
- hive> FIELDS TERMINATED BY '\t'
- hive> COLLECTION ITEMS TERMINATED BY ','
- hive> MAP KEYS TERMINATED BY ':'
- hive> select * from src;
复制代码
根据上面内容,我们来进一步操作:
- hive> insert overwrite local directory '/home/yangping.wu/local'
- > row format delimited
- > fields terminated by '\t'
- > select * from wyp;
复制代码
- [wyp@master ~/local]$ vim 000000_0
- 5 wyp1 23 131212121212
- 6 wyp2 24 134535353535
- 7 wyp3 25 132453535353
- 8 wyp4 26 154243434355
- 1 wyp 25 13188888888888
- 2 test 30 13888888888888
- 3 zs 34 899314121
复制代码
其实,我们还可以用hive的-e和-f参数来导出数据。其中-e 表示后面直接接带双引号的sql语句;而-f是接一个文件,文件的内容为一个sql语句,如下:
-
- [wyp@master ~/local][ DISCUZ_CODE_26 ]nbsp; hive -e "select * from wyp" >> local/wyp.txt
- [wyp@master ~/local][ DISCUZ_CODE_26 ]nbsp; cat wyp.txt
- 5 wyp1 23 131212121212
- 6 wyp2 24 134535353535
- 7 wyp3 25 132453535353
- 8 wyp4 26 154243434355
- 1 wyp 25 13188888888888
- 2 test 30 13888888888888
- 3 zs 34 899314121
复制代码
得到的结果也是用\t分割的。也可以用-f参数实现:
- [wyp@master ~/local]$ cat wyp.sql
- select * from wyp
- [wyp@master ~/local]$ hive -f wyp.sql >> local/wyp2.txt
复制代码
上述语句得到的结果也是\t分割的。