交叉熵损失函数

一、香农熵




香农熵

 
1948 年,香农提出了“ 信息熵”(shāng) 的概念,才解决了对信息的量化度量问题。
一条信息的 信息量大小和它的不确定性有直接的关系。比如说,我们要搞清楚一件非常非常不确定的事,或是我们一无所知的事情,就需要了解大量的信息。相反,如果我们对某件事已经有了较多的了解,我们不需要太多的信息就能把它搞清楚。所以,从这个角度,我们可以认为,信息量的度量就等于不确定性的多少。
中文名
香农熵
外文名
Shannon entropy
所    属
生物信息领域基因表达分析
提出时间
1948 年

基本定义

编辑
对于任意一个随机变量 X(比如得冠军的球队),它的熵定义如下:
变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大。

数学分析

编辑
当然,香农不是用钱,而是用 “ 比特”(bit)这个概念来度量 信息量。 一个比特是一位 二进制数,计算机中的一个字节是八个比特。在上面的例子中,这条消息的信息量是五比特。(如果有朝一日有六十四个队进入决赛阶段的比赛,那么“谁世界杯冠军”的信息量就是六比特,因为我们要多猜一次。) 读者可能已经发现, 信息量的比特数和所有可能情况的 对数函数 log 有关。 (
   
 
。)

计算

编辑
有了“熵”这个概念,我们就可以回答本文开始提出的问题,即一本五十万字的中文书平均有多少信息量。我们知道常用的汉字(一级二级国标)大约有 7000 字。假如每个字等概率,那么我们大约需要 13 个比特(即 13 位 二进制数)表示一个汉字。但汉字的使用是不平衡的。实际上,前 10% 的汉字占文本的 95% 以上。因此,即使不考虑上下文的相关性,而只考虑每个汉字的独立的概率,那么,每个汉字的 信息熵大约也只有 8-9 个比特。如果我们再考虑上下文相关性,每个汉字的信息熵只有5比特左右。所以,一本五十万字的中文书,信息量大约是 250 万比特。如果用一个好的算法压缩一下,整本书可以存成一个 320KB 的文件。如果我们直接用两字节的国标编码存储这本书,大约需要 1MB 大小,是压缩文件的三倍。这两个数量的差距,在信息论中称作“冗余度”(redundancy)。 需要指出的是我们这里讲的 250 万比特是个平均数,同样长度的书,所含的信息量可以差很多。如果一本书重复的内容很多,它的信息量就小,冗余度就大。
不同语言的冗余度差别很大,而汉语在所有语言中冗余度是相对小的。这和人们普遍的认识“汉语是最简洁的语言”是一致的。

实例

编辑
那么我们如何来量化度量信息量呢?我们来看一个例子,马上要举行世界杯赛了。大家都很关心谁会是冠军。假如我错过了看世界杯,赛后我问一个知道比赛结果的观众“哪支球队是冠军”? 他不愿意直接告诉我, 而要让我猜,并且我每猜一次,他要收一元钱才肯告诉我是否猜对了,那么我需要付给他多少钱才能知道谁是冠军呢? 我可以把球队编上号,从 1 到 32, 然后提问: “冠军的球队在 1-16 号中吗?” 假如他告诉我猜对了, 我会接着问: “冠军在 1-8 号中吗?” 假如他告诉我猜错了, 我自然知道冠军队在 9-16 中。 这样最多只需要五次, 我就能知道哪支球队是冠军。所以,谁是世界杯冠军这条消息的 信息量只值五块钱。
香农熵( Shannon entropy)在生物信息领域基因表达分析中有广泛的应用,如一些或一个基因在不同组织材料中表达情况己知,但如何确定这些基因是组织特异性表达,还是广泛表达的,那我们就来计算这些基因在N个样本中的香农熵,结果越趋近于零,则表明它是一个越特异表达的基因,结果越趋近于log2(N)则表示它是一个广泛表达的基因。 [1]  

足球举例

编辑
有些读者此时可能会发现我们实际上可能不需要猜五次就能猜出谁是冠军,因为象巴西、德国、意大利这样的球队得冠军的可能性比日本、美国、韩国等队大的多。因此,我们第一次猜测时不需要把 32 个球队等分成两个组,而可以把少数几个最可能的球队分成一组,把其它队分成另一组。然后我们猜冠军球队是否在那几只热门队中。我们重复这样的过程,根据夺冠 概率对剩下的候选球队分组,直到找到冠军队。这样,我们也许三次或四次就猜出结果。因此,当每个球队夺冠的可能性(概率)不等时,“谁世界杯冠军”的 信息量的信息量比五比特少。香农指出,它的准确信息量应该是
= -(p1*log p1 + p2 * log p2 + ... +p32 *log p32),
其中,p1,p2 , ...,p32 分别是这 32 个球队夺冠的概率。香农把它称为“ 信息熵” (Entropy),一般用符号 H 表示,单位是比特。有兴趣的读者可以推算一下当 32 个球队夺冠概率相同时,对应的信息熵等于五比特。有数学基础的读者还可以证明上面公式的值不可能 大于五

二、交叉熵


熵的本质是香农信息量( log\frac{1}{p} )的期望。

现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布。按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为:H(p)= \sum_{i}^{} p(i)*log\frac{1}{p(i)} 。如果使用错误分布q来表示来自真实分布p的平均编码长度,则应该是:H(p,q)= \sum_{i}^{} p(i)*log\frac{1}{q(i)} 。因为用q来编码的样本来自分布p,所以期望H(p,q)中概率是p(i)。H(p,q)我们称之为“交叉熵”。

比如含有4个字母(A,B,C,D)的数据集中,真实分布p=(1/2, 1/2, 0, 0),即A和B出现的概率均为1/2,C和D出现的概率都为0。计算H(p)为1,即只需要1位编码即可识别A和B。如果使用分布Q=(1/4, 1/4, 1/4, 1/4)来编码则得到H(p,q)=2,即需要2位编码来识别A和B(当然还有C和D,尽管C和D并不会出现,因为真实分布p中C和D出现的概率为0,这里就钦定概率为0的事件不会发生啦)。

可以看到上例中根据非真实分布q得到的平均编码长度H(p,q)大于根据真实分布p得到的平均编码长度H(p)。事实上,根据 Gibbs' inequality可知,H(p,q)>=H(p)恒成立,当q为真实分布p时取等号。我们将由q得到的平均编码长度比由p得到的平均编码长度多出的bit数称为“相对熵”:D(p||q)=H(p,q)-H(p)= \sum_{i}^{} p(i)*log\frac{p(i)}{q(i)} ,其又被称为KL散度(Kullback–Leibler divergence,KLD) Kullback–Leibler divergence。它表示2个函数或概率分布的差异性:差异越大则相对熵越大,差异越小则相对熵越小,特别地,若2者相同则熵为0。注意,KL散度的非对称性。

比如TD-IDF算法就可以理解为相对熵的应用:词频在整个语料库的分布与词频在具体文档中分布之间的差异性。

交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是使用sigmoid函数在梯度下降时能避免均方误差损失函数学习速率降低的问题,因为学习速率可以被输出的误差所控制。

PS:通常“相对熵”也可称为“交叉熵”,因为真实分布p是固定的,D(p||q)由H(p,q)决定。当然也有特殊情况,彼时2者须区别对待。

三、交叉熵损失函数


1.从方差代价函数说起

代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为:

其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】。

在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数:

然后更新w、b:

w <—— w - η* ∂C/∂w = w - η * a *σ′(z)

b <—— b - η* ∂C/∂b = b - η * a * σ′(z)

因为sigmoid函数的性质,导致σ′(z)在z取大部分值时会很小(如下图标出来的两端,几近于平坦),这样会使得w和b更新非常慢(因为η * a * σ′(z)这一项接近于0)。

2.交叉熵代价函数(cross-entropy cost function)

为了克服这个缺点,引入了交叉熵代价函数(下面的公式对应一个神经元,多输入单输出):

其中y为期望的输出,a为神经元实际输出【a=σ(z), where z=∑Wj*Xj+b】

与方差代价函数一样,交叉熵代价函数同样有两个性质

  • 非负性。(所以我们的目标就是最小化代价函数)
  • 当真实输出a与期望输出y接近的时候,代价函数接近于0.(比如y=0,a~0;y=1,a~1时,代价函数都接近0)。

另外,它可以克服方差代价函数更新权重过慢的问题。我们同样看看它的导数:

可以看到,导数中没有σ′(z)这一项,权重的更新是受σ(z)−y这一项影响,即受误差的影响。所以当误差大的时候,权重更新就快,当误差小的时候,权重的更新就慢。这是一个很好的性质。

3.总结

  • 当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢。

  • 不过,你也许会问,为什么是交叉熵函数?导数中不带σ′(z)项的函数有无数种,怎么就想到用交叉熵函数?这自然是有来头的,更深入的讨论就不写了,少年请自行了解。

  • 另外,交叉熵函数的形式是−[ylna+(1−y)ln(1−a)]而不是 −[alny+(1−a)ln(1−y)],为什么?因为当期望输出的y=0时,lny没有意义;当期望y=1时,ln(1-y)没有意义。而因为a是sigmoid函数的实际输出,永远不会等于0或1,只会无限接近于0或者1,因此不存在这个问题。

4.还要说说:log-likelihood cost

对数似然函数也常用来作为softmax回归的代价函数,在上面的讨论中,我们最后一层(也就是输出)是通过sigmoid函数,因此采用了交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的是代价函数是log-likelihood cost。

In fact, it’s useful to think of a softmax output layer with log-likelihood cost as being quite similar to a sigmoid output layer with cross-entropy cost。

其实这两者是一致的,logistic回归用的就是sigmoid函数,softmax回归是logistic回归的多类别推广。log-likelihood代价函数在二类别时就可以化简为交叉熵代价函数的形式。具体可以参考UFLDL教程







交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的预测值与实际值的一种方式。与二次代价函数相比,它能更有效地促进ANN的训练。在介绍交叉熵代价函数之前,本文先简要介绍二次代价函数,以及其存在的不足。


1. 二次代价函数的不足

        ANN的设计目的之一是为了使机器可以像人一样学习知识。人在学习分析新事物时,当发现自己犯的错误越大时,改正的力度就越大。比如投篮:当运动员发现自己的投篮方向离正确方向越远,那么他调整的投篮角度就应该越大,篮球就更容易投进篮筐。同理,我们希望:ANN在训练时,如果预测值与实际值的误差越大,那么在反向传播训练的过程中,各种参数调整的幅度就要更大,从而使训练更快收敛。然而,如果使用二次代价函数训练ANN,看到的实际效果是,如果误差越大,参数调整的幅度可能更小,训练更缓慢。

        以一个神经元的二类分类训练为例,进行两次实验(ANN常用的激活函数为sigmoid函数,该实验也采用该函数):输入一个相同的样本数据x=1.0(该样本对应的实际分类y=0);两次实验各自随机初始化参数,从而在各自的第一次前向传播后得到不同的输出值,形成不同的代价(误差):

实验1:第一次输出值为0.82

     

实验2:第一次输出值为0.98

        

        在实验1中,随机初始化参数,使得第一次输出值为0.82(该样本对应的实际值为0);经过300次迭代训练后,输出值由0.82降到0.09,逼近实际值。而在实验2中,第一次输出值为0.98,同样经过300迭代训练,输出值只降到了0.20。

        从两次实验的代价曲线中可以看出:实验1的代价随着训练次数增加而快速降低,但实验2的代价在一开始下降得非常缓慢;直观上看,初始的误差越大,收敛得越缓慢

        其实,误差大导致训练缓慢的原因在于使用了二次代价函数。二次代价函数的公式如下:



        其中,C表示代价,x表示样本,y表示实际值,a表示输出值,n表示样本的总数。为简单起见,同样一个样本为例进行说明,此时二次代价函数为:



        目前训练ANN最有效的算法反向传播算法。简而言之,训练ANN就是通过反向传播代价,以减少代价为导向,调整参数。参数主要有:神经元之间的连接权重w,以及每个神经元本身的偏置b。调参的方式是采用梯度下降算法(Gradient descent),沿着梯度方向调整参数大小。w和b的梯度推导如下:



        其中,z表示神经元的输入,表示激活函数。从以上公式可以看出,w和b的梯度跟激活函数的梯度成正比,激活函数的梯度越大,w和b的大小调整得越快,训练收敛得就越快。而神经网络常用的激活函数为sigmoid函数,该函数的曲线如下所示:



        如图所示,实验2的初始输出值(0.98)对应的梯度明显小于实验1的输出值(0.82),因此实验2的参数梯度下降得比实验1慢。这就是初始的代价(误差)越大,导致训练越慢的原因。与我们的期望不符,即:不能像人一样,错误越大,改正的幅度越大,从而学习得越快。

        可能有人会说,那就选择一个梯度不变化或变化不明显的激活函数不就解决问题了吗?图样图森破,那样虽然简单粗暴地解决了这个问题,但可能会引起其他更多更麻烦的问题。而且,类似sigmoid这样的函数(比如tanh函数)有很多优点,非常适合用来做激活函数,具体请自行google之。



2. 交叉熵代价函数

        换个思路,我们不换激活函数,而是换掉二次代价函数,改用交叉熵代价函数:



        其中,x表示样本,n表示样本的总数。那么,重新计算参数w的梯度:



        其中(具体证明见附录):


        因此,w的梯度公式中原来的被消掉了;另外,该梯度公式中的表示输出值与实际值之间的误差。所以,当误差越大,梯度就越大,参数w调整得越快,训练速度也就越快。同理可得,b的梯度为:



        实际情况证明,交叉熵代价函数带来的训练效果往往比二次代价函数要好。



3. 交叉熵代价函数是如何产生的?

        以偏置b的梯度计算为例,推导出交叉熵代价函数:



        在第1小节中,由二次代价函数推导出来的b的梯度公式为:



        为了消掉该公式中的,我们想找到一个代价函数使得:



        即:



        对两侧求积分,可得:



        而这就是前面介绍的交叉熵代价函数。




附录:

        sigmoid函数为:


        可证:



  • 13
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值