目录
写在前面:最近开始学习因果机器学习,想着整理一下其中的涉及到一些专有名词和一些概念。后面的话会更多以代码的方式记录一下我的学习过程。
变量
在统计学和数据分析领域,变量是表示某种属性、特征或度量的符号和标签。变量可以是数值型,也可以是类别型。
处理变量
随机对照实验是统计学的黄金标准。一个随机对照实验中,所有影响结果变量的因子要么是静态的要么是随机变化的,所以一定是唯一的输入变量导致了结果变量的变化。然而,许多问题不适合随机对照实验。在随机对照实验不好开展的情况下,学者转而进行观察性研究,即记录数据而不是控制数据。这样的问题是很难将因果与单纯的相关关系中区分开来。
对一个变量干预与以一个变量为条件是不同的。我们干预一个变量时固定了它的值,改变了系统后其他变量的值通常因此改变。我们以一个变量为条件时,什么也没改变,只是将注意力集中在这个变量取我们感兴趣值的子集上。
这里所说的干预变量就是处理变量,也就是treatment。分为二元处理变量和连续处理变量。
结果变量
结果变量分为潜在结果和观测结果,当满足一致性假设时,潜在结果 = 观测结果
这里引入三个因果推断的基本假设的一致性假设(Consistency)
假设一:稳定单位处理值假设(SUTVA, Stable Unit Treatment Value Assumption),也叫一致性假设(Consistency)
任何单位的潜在结果