机器学习
文章平均质量分 77
yin_hei
这个作者很懒,什么都没留下…
展开
-
决策树基本理论学习以及Python代码实现和详细注释
决策树的实现原理以及实现代码和详细注释原创 2017-10-17 20:16:18 · 806 阅读 · 0 评论 -
K近邻算法
k-近邻算法是分类数据最简单有效的算法基本原理:k近邻的意思就是在已知样本集合中找到与要测试的点的最近的k个点,选择k个点中出现次数最多的分类作为该点的类别标签。通常k是不大于20的整数,太大了需要很大的计算量。距离的计算:距离的计算方法可以自定义,这里常用的欧氏距离作为计算的方式 A,B两间时间的距离为x=(a0−b0)2+(a1−b1)2−−−−−−−−−−−−−−−−−−√ x =\sqrt原创 2017-10-16 11:07:18 · 367 阅读 · 0 评论 -
决策树ID3和C4.5的区别
主要描述里ID3和C4.5的区别和改进,C4.5的优缺点,以及信息增益与信息增益比的计算方法区别ID3使用信息增益作为特征选择的度量 C4.5使用信息增益比作为特征选择的度量信息增益 g(D,A)=H(D)−H(D|A)g(D,A)=H(D)-H(D|A) H(D)H(D)是数据集D的熵,计算公式H(D)=−∑Kk=1|Ck|Nlog|Ck|NH(D)=-\sum_{k=1}^K\frac{|原创 2017-11-07 14:41:46 · 10642 阅读 · 0 评论 -
logistic回归算法详细分析与Python代码实现注释
logistic回归是线性回归算法的一种。利用sigmoid函数进行分类。本文介绍了算法的基本思想优化,以及代码实现和详细注释原创 2017-10-31 19:42:08 · 693 阅读 · 0 评论