lucene
排序
Lucene默认按照相关度(score)排序,为了能支持其他的排序方式,比如日期,我们在add Field的时候,必须保证field被Index且不能被tokenized(分词),并且排序的只能是数字,日期,字符三种类型之一
Lucene的IndexWriter调整
IndexWriter提供了一些参数可供设置,列表如下
属性 | 默认值 | 说明 | |
mergeFactor | org.apache.lucene.mergeFactor | 10 | 控制index的大小和频率,两个作用 |
maxMergeDocs | org.apache.lucene.maxMergeDocs | Integer.MAX_VALUE | 限制一个段中的document数目 |
minMergeDocs | org.apache.lucene.minMergeDocs | 10 | 缓存在内存中的document数目,超过他以后会写入到磁盘 |
maxFieldLength | 1000 | 一个Field中最大Term数目,超过部分忽略,不会index到field中,所以自然也就搜索不到 |
这些参数的的详细说明比较复杂:mergeFactor有双重作用
- 设置每mergeFactor个document写入一个段,比如每10个document写入一个段
- 设置每mergeFacotr个小段合并到一个大段,比如10个document的时候合并为1小段,以后有10个小段以后合并到一个大段,有10个大段以后再合并,实际的document数目会是mergeFactor的指数
把maxMergeDocs设置小,可以强制让达到一定数量的document写为一个段,这样可以抵消部分mergeFactor的作用.
minMergeDocs相当于设置一个小的cache,第一个这个数目的document会留在内存里面,不写入磁盘。这些参数同样是没有最佳值的, 必须根据实际情况一点点调整。
maxFieldLength可以在任何时刻设置, 设置后,接下来的index的Field会按照新的length截取,之前已经index的部分不会改变。可以设置为Integer.MAX_VALUE
RAMDirectory 和 FSDirectory 转化
RAMDirectory(RAMD)在效率上比FSDirectyr(FSD)高不少, 所以我们可以手动的把RAMD当作FSD的buffer,这样就不用去很费劲的调优FSD那么多参数了,完全可以先用RAM跑好了index, 周期性(或者是别的什么算法)来回写道FSD中。 RAMD完全可以做FSD的buffer。
为查询优化索引(index)
Indexwriter.optimize()方法可以为查询优化索引(index),之前提到的参数调优是为indexing过程本身优化,而这 里是为查询优化,优化主要是减少index文件数,这样让查询的时候少打开文件,优化过程中,lucene会拷贝旧的index再合并,合并完成以后删除 旧的index,所以在此期间,磁盘占用增加, IO符合也会增加,在优化完成瞬间,磁盘占用会是优化前的2倍,在optimize过程中可以同时作search。
并发操作Lucene和locking机制
- 所有只读操作都可以并发
- 在index被修改期间,所有只读操作都可以并发
- 对index修改操作不能并发,一个index只能被一个线程占用
- index的优化,合并,添加都是修改操作
Locing
lucence内部使用文件来locking, 默认的locking文件放在java.io.tmpdir,可以通过-Dorg.apache.lucene.lockDir=xxx指定新的dir, 有write.lock commit.lock两个文件,lock文件用来防止并行操作index,如果并行操作, lucene会抛出异常,可以通过设置-DdisableLuceneLocks=true来禁止locking,这样做一般来说很危险,除非你有操作系 统或者物理级别的只读保证,比如把index文件刻盘到CDROM上。
调试IndexWriter
IndexWriter 有一个infoStream的变量,调试信息从这里输出。可以把System.out设置给它