两个角度:数据质量分析、数据特征分析
一、数据质量分析(脏数据)
脏数据分类:
* 缺失值(删除、插补、不处理)
* 异常值(离群点):
简单统计量分析(判断合理范围)
3δ原则(偏离平均值3倍标准差)
箱形图分析
* 不一致的值(矛盾性、不相容性)
* 重复数据以及带有特殊符号的数据
二、数据特征分析(绘制图表、计算特征向量)
* 分布分析(绘图):定量:频率分布直方图;定性:饼图、条形图
* 对比分析
* 统计量分析:均值、中位数、众数、极差、标准差、变异系数(标准差相对于均值的离中趋势)、四分位数间距
* 周期性分析
* 贡献度分析(帕累托图)
* 相关性分析(散点图,计算相关系数:pearson相关系数、Spearman秩相关系数、 判定系数)
三、数据探索函数
相关系数:D.corr(method=‘pearson’)
方差:var
标准差 :std
协方差矩阵:cov
describe:percentiles(0.2,0.4)指定分位数
拓展函数:
cumsum():累加
cumprod():累乘,依次给出积
cummax():依次给出前1,2,3…的最大值
画图函数:
plt.plot(s,y,style)二维图
pie :label,size,explode=(0,0.1,0,0)第二部分突出,color
hist
boxplot D.plot(kind=box)