剑指offer-连续子数组最大和

/*
 HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)
 笔记
 收藏
 纠
 */

#include <iostream>
#include<vector>
using namespace std;
vector<int> A;
int FindGreatestSumOfSubArray(vector<int> array,int n) {
    int ma=array[0];

    int sum=0;
    for(int i=0;i<n;i++){

        if(sum<0){
            sum=array[i];
        }
       else{
            sum+=array[i];
        }
        if(sum>ma){
            ma=sum;
        }
    }
    return ma;
}
int main(){
    int n,k;
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>k;
        A.push_back(k);
    }
    int res=FindGreatestSumOfSubArray(A,n);
    cout<<res<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值