刷题记录:NC23046华华教月月做数学

传送门:牛客

题目描述:

给定正整数A、B、P,求A^B mod P的值。
输入:
2
2 5 10
57284938291657 827493857294857 384729583748273
输出:
2
18924650048745

题面很简单,算是一道模板题,首先快速幂的算法,不会的可以去这里去稍微学习一下

学完之后大家肯定都会觉得这道题十分简单啊,并且以熟练的手法轻松的打出了快速幂的代码

ll qpow(ll a,ll b) {
	ll sum=1;
	while(b) {
		if(b&1) {
			sum=qmul(sum,a)%mod;
		}
		a=qmul(a,a)%mod;
		b>>=1;
	}
	return sum;
}

然后一输样例,发现,我焯怎么是负数,那么这就很显然此时即使我们用了快速幂的算法,并且很仔细的都加上了mod和long long,但是依然爆了.原因是因为模数较大的原因导致即使我们取模之后剩余的数字还是太大了,导致我们相乘是依旧爆了long long,那么此时我们该怎么办呢,难道因为这个我们要打一个高精度进去吗.当然不用这么麻烦,接下来就引出我们的快速乘算法了

快速乘算法的主要思路和我们的快速幂基本是一样的

众所周知我们的乘法运算其实是加法运算,那么在之前我们因为乘法爆longlong的地方,我们显然可以直接换成循环加法加上取模的方法进行代替我们的乘法,此时我们就不会再爆longlong 了,但是因为乘数太大,直接使用循环进行加法运算的话肯定会超时,此时就用到了我们的快速乘了

快速乘和我们的快速幂相似,下面举个栗子

假设我们进行7*8的运算
那么类似于快速幂的思想,我们可以将其分成7^1+7^2+7^4+7^8
然后后面的高次幂都可以直接使用之前的低次幂进行自加得到,这点和快速幂的思想基本一致
然后我们就可以类似的写出我们的快速快速乘算法了
ll qmul(ll a,ll b) {
	ll sum=0;
	while(b) {
		if(b&1) {
			sum=(sum+a)%mod;
		}
		a=(a+a)%mod;
		b>>=1;
	}
	return sum;
}

然后是此题的总代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
	ll x=0,w=1;char ch=getchar();
	for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
	for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
	return x*w;
}
#define maxn 1000000
ll mod;
ll qmul(ll a,ll b) {
	ll sum=0;
	while(b) {
		if(b&1) {
			sum=(sum+a)%mod;
		}
		a=(a+a)%mod;
		b>>=1;
	}
	return sum;
}
ll qpow(ll a,ll b) {
	ll sum=1;
	while(b) {
		if(b&1) {
			sum=qmul(sum,a)%mod;
		}
		a=qmul(a,a)%mod;
		b>>=1;
	}
	return sum;
}
int main(){
	ll T;T=read();
	while(T--) {
		ll a,b;a=read();b=read();mod=read();
		printf("%lld\n",qpow(a,b)%mod);
	}
	return 0;
}
好的,这是一个比较简单的数学题,可以用矩阵快速幂求解。以下是 C++ 代码实现: ```c++ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const int MAXN = 2; const int MOD = 1e9 + 7; struct Matrix { LL m[MAXN][MAXN]; Matrix() { memset(m, 0, sizeof(m)); } Matrix operator * (const Matrix& b) const { Matrix c; for (int i = 0; i < MAXN; ++i) { for (int j = 0; j < MAXN; ++j) { for (int k = 0; k < MAXN; ++k) { c.m[i][j] = (c.m[i][j] + m[i][k] * b.m[k][j]) % MOD; } } } return c; } } base, res; Matrix qpow(Matrix a, int b) { Matrix ans; for (int i = 0; i < MAXN; ++i) { ans.m[i][i] = 1; } while (b) { if (b & 1) { ans = ans * a; } a = a * a; b >>= 1; } return ans; } LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a % b); } int main() { LL a, b, n; cin >> a >> b >> n; if (n == 1) { cout << a << endl; } else if (n == 2) { cout << b << endl; } else { base.m[0][0] = base.m[0][1] = base.m[1][0] = 1; res = qpow(base, n - 2); LL ans = gcd(a * res.m[0][0] % MOD + b * res.m[1][0] % MOD, b * res.m[1][0] % MOD + b * res.m[1][1] % MOD); cout << ans << endl; } return 0; } ``` 在这段代码中,我们定义了一个 `Matrix` 结构体,它表示一个 $2\times2$ 的矩阵。其中重载了 `*` 运算符,实现了矩阵乘法。 然后,我们定义了一个矩阵快速幂函数 `qpow`,用于求解矩阵的 $n$ 次方。 最后,在 `main` 函数中,我们通过快速幂求出矩阵 $base$ 的 $n-2$ 次方,然后根据题目要求求出 $\gcd(F_N, F_{N+1})$ 并输出即可。 需要注意的是,当 $n=1$ 或 $n=2$ 时,直接输出 $a$ 或 $b$ 即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值