考虑证明一个整除等式(和整除分块有关?)

考虑证明:

⌊ ⌊ n i ⌋ j ⌋ = ⌊ n i ∗ j ⌋ \lfloor \frac{\lfloor \frac{n}{i} \rfloor}{j} \rfloor=\lfloor \frac{n}{i*j} \rfloor jin=ijn

我们设右边 ⌊ n i ∗ j ⌋ = k \lfloor \frac{n}{i*j} \rfloor=k ijn=k k ≤ n i ∗ j < k + 1 k\leq\frac{n}{i*j}<k+1 kijn<k+1 k ∗ j ≤ n i < ( k + 1 ) ∗ j k*j\leq\frac{n}{i}<(k+1)*j kjin<(k+1)j
此时因为 k ∗ j k*j kj是整数, ( k + 1 ) ∗ j (k+1)*j (k+1)j也是整数,所以假如 n i \frac{n}{i} in是一个整数,那么 k ∗ j ≤ ⌊ n i ⌋ < ( k + 1 ) ∗ j k*j\leq\lfloor \frac{n}{i} \rfloor<(k+1)*j kjin<(k+1)j
假如 n i \frac{n}{i} in不是整数,那么 ⌊ n i ⌋ ≤ n i < ( k + 1 ) ∗ j \lfloor \frac{n}{i} \rfloor\leq\frac{n}{i}<(k+1)*j inin<(k+1)j.又因为其向下取整,所以下限显然依旧是 k ∗ j k*j kj(这部分严格证明可以通过分类其整数部分来证明,但是因为过于显然所以此处略过)

所以我们有 k ∗ j ≤ ⌊ n i ⌋ < ( k + 1 ) ∗ j k*j\leq\lfloor \frac{n}{i} \rfloor<(k+1)*j kjin<(k+1)j那么显然有 k ≤ ⌊ n i ⌋ j < ( k + 1 ) k\leq\frac{\lfloor \frac{n}{i} \rfloor}{j}<(k+1) kjin<(k+1)又因为显然 ⌊ n i ⌋ j \frac{\lfloor \frac{n}{i} \rfloor}{j} jin的整数部分只能取 k k k,所以 ⌊ ⌊ n i ⌋ j ⌋ = k \lfloor \frac{\lfloor \frac{n}{i} \rfloor}{j} \rfloor=k jin=k,所以左右两个式子相等,所以证明成立.

  • 16
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值