传送门:牛客
题目描述:
n 个小区排成一列,编号为从 0 到 n-1 。一开始,美团外卖员在第0号小区,目标为位于第 n-1 个小区的配送站。
给定两个整数数列 a[0]~a[n-1] 和 b[0]~b[n-1] ,在每个小区 i 里你有两种选择:
1) 选择a:向前 a[i] 个小区。
2) 选择b:向前 b[i] 个小区。
把每步的选择写成一个关于字符 ‘a’ 和 ‘b’ 的字符串。求到达小区n-1的方案中,字典序最小的字符串。如果做出某个选择时,你跳出了这n个小区的范围,则这个选择不合法。
• 当没有合法的选择序列时,输出 “No solution!”。
• 当字典序最小的字符串无限长时,输出 “Infinity!”。
• 否则,输出这个选择字符串。
输入:
7
5 -3 6 5 -5 -1 6
-6 1 4 -2 0 -2 0
输出;
abbbb
这道题的DFS算法感觉还是比较简单的,但是细节解决方面还是有点多的
对于我们的DFS算法,显然我们最终的搜索的最终目标是n-1(但是在我后序的处理中我加上了一),对于我们每次的前进,我们都有两种选择(要么是a,要么是b),并且在搜索的过程中注意判断我们的边界即可,就这样我们就搭好了一个DFS应该有的一个框架
接下来我们就只要考虑我们的无限循环的问题了.我们该怎么找是否是形成了循环呢(我们可以考虑维护一个数组,每一次跑到一个点,就判断一下这个点是否已经被遍历过,假设这个点是被搜索过的,那么显然这个区间就已经形成了一个循环(试想一下,从后面的一个点又重新回到了之前走过的一个点,那么肯定是形成了一个循环),假设没有被搜索过,我们标记它即可)
注意答案中的inf是指能达到终点的无限循环,输出inf的前提是能到达我们的终点,否则应该输出No,solution
具体的代码部分(代码中加上了重要的注释):
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
ll x=0,w=1;char ch=getchar();
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
int n;int flag=0;
int vis[maxn],st[maxn];
int a[maxn],b[maxn];char ans[maxn];
int dfs(int s,int step) {
if(s<1||s>n) return false;//判断边界
if(s==n) {//成功了,返回true
return true;
}
if(vis[s]) {//判断之前是否已经出现过
st[s]=1;
return false;
}
vis[s]=1;//标记该点
if(dfs(s+a[s],step+1)) {//假设我们选择a
ans[step]='a';
if(st[s]) flag=1;
return true;
}
if(dfs(s+b[s],step+1)) {//假设我们选择b
ans[step]='b';
return true;/*此处不需要加上st[s]的判断,为什么不用加上我们的判断呢,因为我们会发现构成循环
的前提应该是符合最小字典序的,假设我们因为选择b构成了一个循环,那么它显然是没有选择a来的优的
又因为我们在搜索的过程中我们是先选择a的,因此此时我们肯定是先选择a的,所以他是不会存在由b为优先的一个循环的,因此此时是不需要判断的(当然加上也是可以AC的,因为根本不会用到这个语句)*/
}
return false;
}
int main() {
n=read();
for(int i=1;i<=n;i++) a[i]=read();
for(int i=1;i<=n;i++) b[i]=read();
if(dfs(1,0)) {
if(flag==1) printf("Infinity!\n");
else puts(ans);
}else {
puts("No solution!");
}
return 0;
}