传送门:牛客
题目描述:
游戏开始后,从舞台天幕顶端的格子中不断出现馅饼并垂直下落。游戏者左右移动去接馅饼。游戏者每秒
可以向左或向右移动一格或两格,也可以站在原地不动。
馅饼有很多种,游戏者事先根据自己的口味,对各种馅饼依次打了分。同时,在8-308电脑的遥控下,各种
馅饼下落的速度也是不一样的,下落速度以格/秒为单位。
当馅饼在某一秒末恰好到达游戏者所在的格子中,游戏者就收集到了这块馅饼。
写一个程序,帮助我们的游戏者收集馅饼,使得所收集馅饼的分数之和最大
输入:
3 3
0 1 2 5
0 2 1 3
1 2 1 3
1 3 1 4
输出:
12
-1
1
1
emmm,其实这一道并不是NOI的那道题,这道题是那道题的简化版感兴趣的可以去这里,之后我应该也会做一做那道题并且上线我的博客
主要思路:
- 首先对于这道题我们应该有一个显然的dp思想,我们可以使用
f[i][j]
来表示前i
分钟我们在j
位置所获得的最大值. - 但是当我们产生这个想法之后我们会发现这种比较难以实现,因为最后的最优位置我们是不知道的,这就意味着我们不好记录我们的最优路径.但是我们发现我们的起点其实是固定的,这样的话我们是不是可以倒推的解决这道题??,我们可以从最大的落下时间开始,然后转移前一段时间的状态即可,并且这一段区间是有[-2,2]这一段区间的.emmm,似乎讲不清楚
dp[ i ][ j ]=max(dp[ i ][ j ],dp[ i+1 ][ j+k ]+a[ i ][ j ]) k ∈ \in ∈[-2,2]
不懂上面我的解释的话,可以直接看这个转移方程,感觉还是挺好懂的.不断的转移即可,就是将之前有数据的位置向左右进行扩展即可,当然在扩展的同时我们还需要记录,每一次改变就记录一下 K K K即可.
对于我们最后的路径我们可以直接输出每一段时间的值即可,然后对于我们的位置(我们刚开始显然是中间点),后来的话就可以使用我们之前的那个 K K K进行移动即可
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
ll x=0,w=1;char ch=getchar();
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
int w,h;
int a[2000][2000];
int dp[2000][2000];
int path[2000][2000];
int main() {
w=read();h=read();
h-=1;int max_t=-inf;
int xialuo_t,pos,xialuo_v,ww;
while(scanf("%d%d%d%d",&xialuo_t,&pos,&xialuo_v,&ww)!=EOF) {
if(h%xialuo_v!=0) continue;
a[xialuo_t+h/xialuo_v][pos]+=ww;
max_t=max(max_t,xialuo_t+h/xialuo_v);
}
for(int i=max_t;i>=0;i--) {
for(int j=1;j<=w;j++) {
for(int k=-2;k<=2;k++) {
if(j+k<1||j+k>w) continue;
if(dp[i][j]<dp[i+1][j+k]+a[i][j]) {
dp[i][j]=dp[i+1][j+k]+a[i][j];
path[i][j]=k;
}
}
}
}
printf("%d\n",dp[0][(w>>1)+1]);
int state=(w>>1)+1;
for(int i=0;i<max_t;i++) {
printf("%d\n",path[i][state]);
state+=path[i][state];
}
return 0;
}