传送门:牛客
题目描述:
牛牛在牛市的旅游纪念商店里面挑花了眼,于是简单粗暴的牛牛决定——买最受欢迎的就好了。
但是牛牛的背包有限,他只能在商店的n个物品里面带m个回去,不然就装不下了。
并且牛牛希望买到的纪念品不要太相似,所以导购小姐姐帮助牛牛把纪念品全部排成了一行,牛牛只需要让选出来要买的m个物品中任意两个的位置差都大于等于k就行了。
现在告诉你这n个物品排成一行之后的受欢迎程度(可能是负数),求牛牛带回去的m个物品的最大欢迎度之和。
输入:
4 2 2
2 4 -6 1
输出:
5
感觉是一道经典的线性dp题??
主要思路:
- 我们可以使用一个数组 d p [ i ] [ j ] dp[i][j] dp[i][j]来记录前 i i i个位置选了 j j j和物品的最大欢迎度
- 对于每一个枚举到的物品,我们有两种选择,要么我们选取第 i i i中物品,我们就可以从 i − k i-k i−k的位置进行转移, d p [ i ] [ j ] = d p [ i − k ] [ j − 1 ] + a [ i ] dp[i][j]=dp[i-k][j-1]+a[i] dp[i][j]=dp[i−k][j−1]+a[i],或者 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j]=dp[i-1][j] dp[i][j]=dp[i−1][j]两者取max即可
- 当然dp的初始化就是 d p [ i ] [ 1 ] = m a x ( d p [ i − 1 ] [ 1 ] , a [ i ] ) dp[i][1]=max(dp[i-1][1],a[i]) dp[i][1]=max(dp[i−1][1],a[i]),这个初始化应该不难理解
下面是具体的代码部分:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
ll x=0,w=1;char ch=getchar();
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
int n,m,k;ll a[maxn];ll dp[10010][110];
int main() {
n=read();m=read();k=read();
memset(dp,-0x3f,sizeof(dp));
for(int i=1;i<=n;i++) {
a[i]=read();
dp[i][1]=max(dp[i-1][1],a[i]);
}
for(int i=k+1;i<=n;i++) {
for(int j=2;j<=min((i-1)/k+1,m);j++) {
dp[i][j]=max(dp[i-1][j],dp[i-k][j-1]+a[i]);
}
}
cout<<dp[n][m]<<endl;
return 0;
}