leetcode 416:分割等和子集

该博客详细介绍了如何使用动态规划解决LeetCode上的第416题——分割等和子集。通过分析问题,博主指出当数组总和为奇数时无法分割,而当总和为偶数时,可以尝试找到一个子集和为目标值的一半。博主展示了两种解法:回溯和动态规划。动态规划解法中,博主创建了一个二维数组dp,表示在前i个数中是否存在和为j的子集,并给出了详细的动态规划状态转移方程。
摘要由CSDN通过智能技术生成

leetcode 416:分割等和子集

416. 分割等和子集

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

Related Topics

数组

动态规划

思路1:回溯(超时)

分析:找到2个相等的子集,如果这个子集总和是奇数,那么永远不会存在2个相等的子集。

在偶数的情况可能存在,我们只需要找到一个和为sum/2的子集就可以。

class Solution {
    public boolean canPartition(int[] nums) {
        int sum = 0;
        for(int num : nums){
            sum += num;
        }
        if( sum % 2 != 0){
            return false;
        }
        int target = sum/2;
        return dfs(nums,0,target);
    }
    public boolean dfs(int[] nums,int index,int target){
        if(target == 0){
            return true;
        }
        if(index == nums.length || target < 0){
            return false;
        }
        return dfs(nums,index+1,target-nums[index]) || dfs(nums,index+1,target);
    }
}

思路2:动态规划

dp表示前i个数能否构成和为j的子集。

分析:

  1. 如果数组长度为1,无法构成子集。
  2. 如果数组和为奇数,也无法构成2个相等的子集。
  3. 我们需要找到数组中一个子集和(target)为总和的一半的子集。
    1. 如果数组中的最大值大于target,说明剩下的元素和小于target,无法构成子集。

接下来是动态规划:

  1. 首先,任意范围内的数,都可以构成空集,也就是和为0。所以需要设置边界为true。
  2. 遍历每一个数,
    1. 如果这个数大于j,说明这个数肯定不能构成子集,只需要判断前面i-1个数是否能构成。
    2. 这个数小于j,说明这个数可以构成子集dp[i][j-num],也可能不需要,前面i-1个数已经构成了dp[i-1][j]
class Solution {
    public boolean canPartition(int[] nums) {
        //如果长度为1 不可能分为2个子集
        int len = nums.length;
        if(len < 2){
            return false;
        }
        //求和
        int sum = 0;
        int max = Integer.MIN_VALUE;
        for(int num : nums){
            sum += num;
            max = Math.max(max,num);
        }
        //奇数和无法构成
        if( sum % 2 != 0){
            return false;
        }
        //寻找目标子集和
        int target = sum/2;

        //如果target小于max,那么剩下的元素和肯定小于target 也无法构成
        if(target < max){
            return false;
        }
        //动态规划 判断数组是否能找子集和为target dp表示前i个数范围内能否构成目标为j的数
        boolean[][] dp = new boolean[len+1][target+1];
        //前i个中任意一个组合都可以构成目标为0的集合 也就是空集
        for(int i = 0 ; i < len+1; i++){
            dp[i][0] = true;
        }
        for(int i = 1; i < len + 1;i++){
            int num = nums[i-1];
            for(int j = 1 ; j <= target;j++){
                if(num > j){
                    dp[i][j] = dp[i-1][j];
                }else{
                    dp[i][j] = dp[i-1][j] || dp[i-1][j-num];
                }
            }
        }
        return dp[len-1][target];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值