caffe
文章平均质量分 55
狮子HH
且将新火试新茶,诗酒趁年华!
展开
-
caffe学习笔记(二)--MNIST实例
LeNet MNIST实例 MNIST手写数字数据库是另外一个更大的手写体数据库NIST的子集,现在已成为图像识别领域用来测试自己的算法的一个基准数据库,它的训练集由60000张手写数字图片样本组成,测试集包含了10000个样本,其中所有的图片样本都经过了尺寸标准化和中心化,图片的大小固定为28*28。 据说该数据集中的图片是由美国中学生手写的数字,所以非常贴近实际,如果你的模型在该测试集上的测原创 2015-04-10 20:38:22 · 14057 阅读 · 3 评论 -
caffe之CIFAR-10与dropout
CIFAR-10实例 caffe中的CIFAR-10实例重现了Alex Krizhevsky的cuda-convnet中的结果,具体的模型定义、参数、训练步骤等都是按照cuda-convnet中的进行设置的。不过,该实例仍是半成品,目前官网上介绍的只是quick train,对于进一步解释网络细节和训练选择的full training还未完工。 cuda-convnet是Alex Krizhev原创 2015-04-13 17:04:19 · 6425 阅读 · 0 评论 -
caffe 学习笔记(一)
caffe是一个深度学习的开源框架,是贾扬清在伯克利大学读博时开发的,现在由伯克利大学的视觉学习中心BVLC(the Berkeley Vision and Learning Center)负责维护。 ————————————————————— 在介绍caffe前,先简单介绍下贾扬清。http://daggerfs.com/ 贾扬清目前在google从事计算机视觉方面的工作,在UC Be原创 2015-04-08 22:58:45 · 5651 阅读 · 0 评论 -
caffe学习笔记(三)ImageNet实例
个人认为,相对于MNIST和CIFAR-10来说,ImageNet实例或许是caffe中最具有学习价值的实例。通过该实例的学习,你可以用caffe在自己的数据集上搭建自己的模型。当然,如果你没有那么多的时间和精力去重新训练一个ImageNet网络,只是想要一个训练好的现成的模型,那么你也可以去官网上的model zoo部分找到你所要的。caffe 中打包好了几个训练好的BVLC模型,你可以‘开箱即用原创 2015-04-16 17:46:19 · 10957 阅读 · 6 评论 -
图片尺寸批量resize的matlab并行代码
在caffe ImageNet例子中有对图片进行resize的部分,文中使用的是linux shell脚本命令:for name in /path/to/imagenet/val/*.JPEG; do convert -resize 256x256\! $name $namedone但该命令在运行后光标就一直处于等待状态,直到所有的图片全部运行结束。这种情况在图片数量比较大时就很恼人(对于原创 2015-06-16 16:48:22 · 9364 阅读 · 2 评论 -
matcaffe编译与测试
编译 make matcaffe -j8测试 make mattest -j8要在matlab中使用caffe时需要先添加路径 addpath ./matlab (这里的“.”表示当前目录,即caffe的根目录。如果在其他目录中调用matcaffe需要修改该路径。) 在matlab中使用help caffe 可测试路径是否添加成功。原创 2016-03-30 14:54:27 · 8064 阅读 · 1 评论 -
pycaffe安装与路径配置
python使用Anaconda环境.Anaconda安装下载wget https://3230d63b5fc54e62148e-c95ac804525aac4b6dba79b00b39d1d3.ssl.cf1.rackcdn.com/Anaconda2-2.5.0-Linux-x86_64.sh安装 bash Anaconda2-2.5.0-Linux-x86_64.sh 默认安装就行了原创 2016-03-30 14:50:23 · 21169 阅读 · 4 评论