智能电子围棋棋盘大盘点

文章介绍了智能围棋棋盘的发展,包括不同类型的感应技术,如磁感式,并对比了几款主流产品——弈狐、隐智和三三互娱的智能棋盘,关注其尺寸、重量、续航、连接方式和软件功能。尽管市场存在成本高、用户群体有限等问题,但这些产品提供了与传统棋盘不同的体验,如AI对战和眼保健优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    所谓电子棋盘,抑或智能棋盘,是安装了棋子检测传感器,能识别对弈双方的落子,进而能实现记录棋谱、人机/联网对战等功能的棋盘。智能电子棋盘相对于传统棋盘,增加了智能的对战和复盘、打谱学习等功能,又相比较电子设备上的纯棋类软件而言实战感强,不用长期盯着电子屏幕,有效保护眼睛,因此不少开发者在这个领域做出了贡献。历史上曾出现过多个公司,开发出了各种形态的电子棋盘,如松下公司在1981年就曾为日本棋院提供过一款电子围棋棋盘。

    棋盘棋子的感应原理也多种多样,有的是利用棋子遮挡光线来实现棋子检测的光感方式(缺点是容易受到环境光线的影响),有的是底部加磁性材料,利用磁性材料的极性判断棋子位置,还有的是电容触摸式,重力压感式,以及电感式,图像识别式,和RFID式的检测方式。基于成本控制和实现的效果,目前主流的电子围棋棋盘已经大部分都采用了磁感式的检测方式。

    虽然已经越来越多的棋院和棋友接受了智能棋盘这种形态的产品,但是由于围棋361个感应点都要布置传感器,尺寸也大,导致成本和售价居高不下,加上围棋相对属于小众项目,能够花大价钱去购买智能棋盘的用户则更少,以至于不少在市面上出现过的智能棋盘产品,都是昙花一现,最终退出了市场。

    如下是几款已经在市场难觅踪迹的智能围棋棋盘产品: 

睿碁

小棋

弈客

新博

    目前还存留在市场上的几款主流的围棋智能棋盘,主要为以下几款:弈狐、隐智、三三互娱

弈狐

隐智

三三互娱

    下面对它们的主要参数做一下对比:

弈狐

隐智

三三互娱

尺寸

486x448mm,

高15mm,

棋格: 23mmx24mm

545 x 502mm,

高30mm,

棋格: 22.5mmx22mm

449X467mm,

高13.8mm

棋格:中号

重量

主机净重:约2kg

主机净重: 4.3kg

主机净重: 约2kg

供电

内置锂电池,续航>10小时,

TPYE-C充电口

外接适配器供电

内置锂电池,续航>10小时,

TPYE-C充电口

连接方式

蓝牙

自集成5寸小平板

wifi

感应方式

磁感

磁感

磁感

LED指示

双色,

不同颜色来区分黑白子位置

三色,

有不同颜色指示落子位置

单色,

只能指示单颗棋子的落点位置

表面覆膜

纺木纹路,防滑

纺木纹路,防滑

普通纯淡黄膜,不防滑

APP

安卓 / IOS

Android(自带)

微信,安卓

软件功能

弈狐围棋APP功能丰富,也可以支持第三方平台;

内置隐智APP,功能丰富,也可以支持第三方平台;

小程序功能较为简单,独立APP只用于对接第三方平台,目前使用效果不佳;

支持的平台

腾讯、弈城、新博、九九、野狐少儿、星阵等

腾讯、弈城、新博、九九等

腾讯、弈城、新博、九九、野狐少儿等

对接第三方平台的效果

用户反馈很多不兼容情况

功能

蓝牙连接手机,支持AI对战、双人对战、记谱、打谱、猜棋、做死活题、以及对接第三方对弈平台;

集成小平板,支持以上功能;

Wifi联网,但是还是需要借助手机支持以上功能;

线上售价

1880元

4480元

2580元

    综合来说,三款智能围棋棋盘的感应方式都采用了磁感方式,因此感应效果方面差距不大。弈狐智能棋盘最早推出市场(大概在16年有第一代产品),产品相对成熟,软件方面也比较丰富。隐智因为集成了一个小平板,无需外接手机,自己的软件系统也比较全面,因此也比较易用(可惜不知道是否因为集成小平板的缘故,必须外接电源,导致不够便携)。除隐智外,弈狐有推出过一个可以专用搭配的平板,不知道弈狐和三三互娱这两家是否也会都推出集成小平板的版本。三三互娱推出的时间比较晚,产品相对没有那么成熟,从用户反馈看,第三方平台的支持兼容性方面有所欠缺。

### 智能围棋棋盘的技术实现 智能围棋棋盘是一种结合硬件与软件技术的产品,其核心在于如何将传统棋盘的功能数字化并融入人工智能算法。以下是关于智能围棋棋盘技术实现的关键部分: #### 1. **AI围棋引擎** 现代AI围棋引擎的核心基于深度学习和强化学习技术。AlphaGo的成功展示了神经网络在复杂决策中的强大能力[^1]。当前的围棋AI通常采用蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)结合卷积神经网络(Convolutional Neural Network, CNN),用于评估棋局状态并预测下一步的最佳走法。 ```python import numpy as np def evaluate_position(board_state): """ 使用CNN模型评估棋盘位置。 :param board_state: 当前棋盘的状态矩阵 :return: 胜率估计值 """ cnn_model = load_cnn_model() # 加载预训练的CNN模型 win_rate = cnn_model.predict(np.array([board_state])) return win_rate ``` 这种架构使得AI能够超越人类的经验积累,在复杂的局面下提供更优的选择[^2]。 --- #### 2. **棋盘设计** 智能围棋棋盘的设计需兼顾用户体验和技术需求。常见的设计方案包括触控屏、磁感应技术和光学识别三种方式: - **触控屏**:利用电容或电阻触摸屏捕捉玩家的动作,并实时更新到虚拟棋盘上。这种方式简单易用,但可能增加设备成本。 - **磁感应技术**:通过嵌入棋子内的微型磁铁以及棋盘上的传感器阵列来检测棋子的位置变化。这种方法具有高精度和低延迟的特点,适合高端产品应用。 - **光学识别**:借助摄像头拍摄棋盘图像并通过计算机视觉算法分析棋子分布情况。此方法灵活性较高,但也面临光线条件影响等问题。 --- #### 3. **软硬件集成** 为了实现完整的智能围棋体验,需要将上述各模块紧密结合起来。具体流程如下: - 用户操作物理棋盘; - 系统捕获动作数据并将之转换成数字信号; - AI引擎接收输入后计算最优策略并向用户提供反馈。 这一过程依赖于高效的通信协议和支持多线程处理的操作系统环境。 --- ### §相关问题§ 1. 如何进一步优化现有AI围棋引擎以适应不同水平用户的个性化需求? 2. 在开发过程中遇到哪些挑战会影响智能围棋棋盘的实际性能表现? 3. 是否存在开源项目可以作为构建个人版智能围棋系统的起点? 4. 对比其他棋类游戏(如国际象棋),为什么围棋特别适合作为测试AI极限的对象之一? 5. 随着量子计算的发展,未来是否会改变目前经典计算机主导下的围棋AI格局?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值