leetcode123.买卖股票的最佳时机III:一维动态规划

题目
在这里插入图片描述
思路一:三维动态规划
dp[i][j][k]:
i表示第几天,
j表示是否持有股票,0表示不持有,1表示持有
k表示第几次交易,取值0,1,2

具体代码

class Solution {
    public int maxProfit(int[] prices) {
        if(prices.length < 2) return 0;
        int len = prices.length;
        int[][][] dp = new int[len][2][3];
        dp[0][1][0] = -prices[0];
        dp[0][1][1] = -prices[0];
        dp[0][1][2] = -prices[0];
        for(int i = 1;i < len;i++){
            dp[i][0][0] = 0;
            dp[i][0][1] = Math.max(dp[i-1][0][1],dp[i-1][1][0]+prices[i]);
            dp[i][0][2] = Math.max(dp[i-1][0][2],dp[i-1][1][1]+prices[i]);
            dp[i][1][0] = Math.max(dp[i-1][1][0],dp[i-1][0][0]-prices[i]);
            dp[i][1][1] = Math.max(dp[i-1][1][1],dp[i-1][0][1]-prices[i]);
            dp[i][1][2] = 0;
        }
        return Math.max(dp[len-1][0][1],dp[len-1][0][2]);
    }
}

思路二:二维动态规划
dp[i][j]:
j取值为0~4,0表示未交易,1表示买入一次,2表示卖出一次,3表示买入两次,4表示卖出2次

具体代码

class Solution {
    public int maxProfit(int[] prices) {
        if(prices.length<2) return 0;
        int len = prices.length;
        int[][] dp = new int[len][5];
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for(int i = 1;i < len;i++){
            dp[i][0] = 0;
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
            dp[i][2] = Math.max(dp[i-1][2],dp[i-1][1]+prices[i]);
            dp[i][3] = Math.max(dp[i-1][3],dp[i-1][2]-prices[i]);
            dp[i][4] = Math.max(dp[i-1][4],dp[i-1][3]+prices[i]);
        }
        return Math.max(dp[len-1][2],dp[len-1][4]);
    }
}

思路三:一维动态规划
其实就是从二维动态规划演进过来,初始化的值发生了改变。

具体代码

class Solution {
    public int maxProfit(int[] prices) {
        if(prices.length<2) return 0;
        int len = prices.length;
        int[] dp = new int[5];
        dp[1] = -prices[0];
        dp[2] = Integer.MIN_VALUE;
        dp[3] = Integer.MIN_VALUE;
        dp[4] = Integer.MIN_VALUE;
        for(int i = 1;i < len;i++){
            dp[1] = Math.max(dp[1],dp[0]-prices[i]);
            dp[2] = Math.max(dp[2],dp[1]+prices[i]);
            dp[3] = Math.max(dp[3],dp[2]-prices[i]);
            dp[4] = Math.max(dp[4],dp[3]+prices[i]);
        }
        return Math.max(dp[2],dp[4]);
    }
}

参考链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值