day40 协程 gevent模块 asyncio模块

昨日回顾

1 GIL锁:全局解释器锁,因为垃圾回收线程不是线程安全的,所有线程必须拿到这把锁,才能执行
2 GIL跟互斥锁的区别?GIL锁不能保证我们自己的数据安全,自己使用互斥锁保证自己的数据安全
3 不同线程数据交互两种方式:
	-共享变量:不同线程修改同一份数据要加锁(互斥锁)
    -通过queue:不需要考虑数据安全问题(线程安全了)
4 死锁现象:
	-1 A线程拿到了A锁,等待B锁,B线程拿到了B锁,等待A锁,相互等待,永远等下去
    -2 A线程拿到了A锁,再去拿A锁
5 递归锁(可重入锁):当前线程可以多次获得锁,每获得一次,计数器加一,每释放一次,计数器减一,只有计数器为0,其他线程才能获得
6 Event事件:(了解)
	-event.set():发信号
    -event.wait():阻塞等信号,只要收到set信号,就会继续往下执行
7 信号量:(了解),类似于锁,允许多条线程同时修改数据(有一些词,再不同环境下意思不一样)
8 Queue:三个:先进先出,后进先出,优先级   (线程Queue,跟进程的不是一个Queue)
9 池:池子,用来做缓冲
10 线程池:
	from concurrent.futures import ThreadPoolExecutor
    pool=ThreadPoolExecutor(5)
    pool.submit(task,参数1,参数2).add_done_callback(回调函数)
    # task执行完的数据如何给回调函数,回调函数会接收一个f对象,对象中有要的数据(task的return结果),f.result()
11 进程池同理,用法完全一样,只是换一个类
	# 了解
    from multiprocessing import Pool
    p=Pool(3)
        for url in urls:
            p.apply_async(get_page,args=(url,),callback=pasrse_page)
    
12  并发:同一时间段内,多个任务执行(单核cpu可以实现),人跑步,鞋带开了,停下系鞋带,然后继续跑步,5分钟内,它干了两个是
	并行:同一时刻,多个任务执行(单核cpu实现不了,必须多核),人跑步的同时听着歌
    
13 多核多线程比单核多线程更差,IO密集型用多线程,CPU(计算)密集型用多进程

# FastApi,django3.0,sanic,tornado:支持异步,有协程

今日内容

1 线程池和进程池的shutdown

# 主线程等待所有任务执行完成

from concurrent.futures import ThreadPoolExecutor
import time

pool = ThreadPoolExecutor(3)


def task(name):
    print('%s 开始'%name)
    time.sleep(1)
    print('%s 结束'%name)


if __name__ == '__main__':
    for i in range(20):
        pool.submit(task, '屌丝%s' % i)

    # 放到for外面
    pool.shutdown(wait=True)  # 等待所有任务完成,并且把池关闭
    # 问题,关了还能提交任务吗?不能再提交了
    pool.submit(task,'sdddd')
    print('主') # 立马执行,20个线程都执行完了,再执行

2 定时器

# 多长时间之后执行一个任务
from threading import Timer


def task(name):
    print('我是大帅比--%s'%name)


if __name__ == '__main__':
    # t = Timer(2, task,args=('lqz',))  # 本质是开两个线程,延迟一秒执行
    t = Timer(2, task,kwargs={'name':'lqz'})  # 本质是开两个线程,延迟一秒执行
    t.start()

3 协程介绍

# 进程,线程,协程
# 协程是为了实现单线程下的并发,属性线程下
# 协程要解决的问题:保存状态+切换
# yield:生成器,只要函数中有yield关键字,这个函数就是生成器,通过yield可以实现保存状态+切换


4 greenlet模块

from greenlet import greenlet
import time
# 遇到io不会切,初级模块,gevent模块基于它写的,处理io切换
def eat():
    print('我吃了一口')
    time.sleep(1)
    # p.switch()
    print('我又吃了一口')
    # p.switch()


def play():
    print('我玩了一会')
    e.switch()
    print('我又玩了一会')


if __name__ == '__main__':
    e = greenlet(eat)
    p = greenlet(play)
    e.switch()

5 gevent模块

# 以后使用,这一句必须写
from gevent import monkey;monkey.patch_all()
import gevent
import time

def eat(name):
    print('%s 吃了一口' % name)
    time.sleep(1)  # io操作,被猴子补丁替换之后,gevent.sleep()
    print('%s 又吃了一口' % name)


def play(name):
    print('%s 玩了一会' % name)
    time.sleep(2)
    print('%s 又玩了一会' % name)


if __name__ == '__main__':
    ctim = time.time()
    e = gevent.spawn(eat,'lqz')
    p = gevent.spawn(play,'lqz')
    e.join() # 等待e执行完成
    p.join()
    print('主')
    print(time.time() - ctim)  #2.0165154933929443

6 单线程的套接字并发

# 使用gevent实现单线程下的套接字并发效果

7 asyncio

# 官方支持协程的库



# import time
# import asyncio
#
# # 把普通函数变成协程函数
# # 3.5以前这么写
# @asyncio.coroutine
# def task():
#     print('开始了')
#     yield from asyncio.sleep(1)  #asyncio.sleep(1)模拟io
#     print('结束了')
#
#
# loop=asyncio.get_event_loop()  # 获取一个时间循环对象#
#
# # 协程函数加括号,并不会真正的去执行,它需要提交给loop,让loop循环着去执行
# # 协程函数列表
#
# ctime=time.time()
# t=[task(),task()]
# loop.run_until_complete(asyncio.wait(t))
# loop.close()
# print(time.time()-ctime)


import time
import asyncio
from threading import current_thread
# 表示我是协程函数,等同于3.5之前的装饰器
async def task():
    print('开始了')
    print(current_thread().name)
    await asyncio.sleep(3)  # await等同于原来的yield from
    print('结束了')

async def task2():
    print('开始了')
    print(current_thread().name)
    await asyncio.sleep(2)
    print('结束了')

loop=asyncio.get_event_loop()

ctime=time.time()
t=[task(),task2()]
loop.run_until_complete(asyncio.wait(t))
loop.close()
print(time.time()-ctime)

7 io模型(重点,抽象,难,面试重点)

1 内存分为内核缓冲区和用户缓冲区(网络下载的资源,硬盘加载的资源,先放到内核缓冲区----》copy到应用程序的缓冲区,应用程序才能用这个数据)

2 io模型:
	-阻塞io(BIO)
    -非阻塞io(NIO)
    -io多路复用()  select(windows支持,windows不支持epoll,官方不提供redis的window版本),poll,epoll(linux支持)
    -异步io:
    -信号驱动io(理论,不在考虑范围内)

补充虚拟环境

1 解决不同项目依赖的模块版本不同的问题
2 pycharm中创建项目时选择
	-这个虚拟环境可不可以给其他项目使用(取决你是否选择)
    -基于系统解释器当前状态还是纯净状态来创建虚拟环境
3 装模块:
	-cmd窗口下:pip3 install flask   (装在谁下,你一定要确认好)
    -推荐你们用pycharm:setting---》那一套
    -pycharm下的terminal下装(相当于cmd),比cmd好在,它有个提示
4 现在用了虚拟环境如何换到系统环境
    
4 环境变量的作用
	-把一个路径加入到环境变量,以后该路径下的命令,可以再任意位置执行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值