
算法
文章平均质量分 90
糖葫芦君
这个作者很懒,什么都没留下…
展开
-
16-Identity Mappings in Deep Residual Networks
hf函数应该使用恒等映射,保证梯度可以直接回传至任意浅层,不容易产生梯度消失或爆炸,相比其它hf函数效果更好h:使用会阻碍传播,产生优化问题f :使用BN会阻断梯度的传播,不要加在addition之后ReLU不要加在残差模块的最后:希望残差模块的输出是无穷正无穷之间1.保证f和h是恒等映射2.在残差模块中将BN和Relu函数提前,效果最好3.将BN放在weight之前:保证每一层残差模型的输入都是归一化的。原创 2025-03-26 12:38:52 · 378 阅读 · 0 评论 -
FM算法
FM算法存在的问题基于的思想具体方法时间复杂度优点参考资料存在的问题稀疏数据下的特征组合问题类别特征经过one-hot编码转换后会导致样本特征的稀疏性,并且会得到千万级别甚至上亿级别的特征空间,导致特征空间爆炸多项式模型:可以看出,组合的特征的参数一共有 n(n−1)2\frac{n(n-1)}{2}2n(n−1)个,并且它们都是相互独立的,而且在数据稀疏普遍存在的实际应用场景中...原创 2019-12-12 22:16:08 · 1344 阅读 · 0 评论 -
leetcode排列组合集合
46. PermutationsGiven a collection of distinct integers, return all possible permutations.Example:Input: [1,2,3]Output:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]class Solution {pu...原创 2019-11-30 13:25:48 · 332 阅读 · 0 评论 -
DFS深度优先搜索(leetcode题目)
题目链接leetcode 494. Target Sumdp(暴力搜索)class Solution {public: int ways; int findTargetSumWays(vector<int>& nums, int S) { ways=0; findTargetSum(nums, 0, 0, S); ...原创 2019-10-20 17:02:32 · 814 阅读 · 0 评论 -
决策树完整总结(ID3,C4.5,CART)
文章目录1.介绍1.1 定义1.2 决策树与条件概率分布1.3 决策树的构建1.3.1 划分准则1.3.2 停止条件:2. 决策树的构建过程2.1 ID3算法2.2 C4.5算法3. 决策树的剪枝算法3.1:树的剪枝算法:3.1 基尼指数5.2 CART剪枝4. 优点1.介绍1.1 定义决策树学习的目标是根据给定的训练数据集合构建一个决策树模型,使它能够对实例进行正确的分类。决策树学习的本质...原创 2019-04-29 23:19:19 · 3029 阅读 · 0 评论 -
最小生成树与并查集(leetcode684,685, 721)
文章目录最小生成树Kruskal算法Prime算法并查集三个操作具体题目path compression和union by rank参考资料最小生成树说道并查集,不得不提的是最小生成树,因为并查集的最经典的应用就是解决最小生成树的Kruskal算法。有两个经典的算法可以用来解决最小生成树问题:Kruskal算法和Prim算法。其中Kruskal算法中便应用了并查集这种数据结构。Kruska...原创 2019-04-23 12:29:02 · 5397 阅读 · 1 评论 -
NFM(Neural Factorization Machines for Sparse Predictive Analytics)
普遍问题在预测任务中,特征向量是高度稀疏的,学习特征交互是重要的为什么提出该方法,其他方法的缺点人工设计特征组合需要领域知识,很难泛化到新问题或者新领域,没有办法捕获到没有出现在训练数据中的组合特征;embedding的方式:FM:以线性的方式学习二阶特征交互,对于捕获现实数据非线性和复杂的内在结构表达力不够;深度网络:例如Wide&Deep 和DeepCross,简...原创 2019-05-19 22:00:51 · 998 阅读 · 0 评论 -
优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam)
文章目录优化方法概述整体框架SGDMomentum理解指数加权平均偏差修正AdaGradAdaDelta/RMSPropAdam(Adaptive Moment Estimation)Adam+L2 regularizationL2 regularization与Weight decay学习率衰减局部最优优化方法概述模型优化方法的选择直接关系到最终模型的性能。有时候效果不好,未必是特征的问题或...原创 2019-05-29 01:07:50 · 37480 阅读 · 14 评论 -
Diverse Ranking with Policy-Value Networks
文章目录Abstract:Introduction相关工作2.1搜索结果多样性2.2 强化学习for IR3. MDP and MCTS3.1 Markov decision process3.2 Monte Carlo tree search4.使用policy-value networks进行多样化排序4.1 MDP formulation of diverse ranking4.2 Stre.................................原创 2019-06-23 17:14:18 · 801 阅读 · 3 评论 -
Adapting Markov Decision Process for Search Result Diversification
多样化排名的MDP形式多样化排序模型可以被看作是在每一个排序位置学习MDP模型的参数。其中MDP的states,actions,rewards,transitions和policy。State S:st=[Zt,Xt,ht]s_t=[Z_t, X_t,h_t]st=[Zt,Xt,ht]其中hth_tht是编码了用户从之前的文档ZtZ_tZt接收到的untility,还有基于q需...原创 2019-07-03 20:20:12 · 422 阅读 · 0 评论 -
奇异值分解
奇异值分解理论描述新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入理论描述奇异值分解(singular va...原创 2019-04-26 16:20:24 · 678 阅读 · 0 评论 -
2019字节跳动笔试题
测试用例:N组数据每组数组输入n个人,n个人的分数输入:221 241 2 3 3输出38第四题:有N根绳子,第i根绳子长...原创 2019-03-16 12:50:31 · 3832 阅读 · 1 评论 -
用快排解决Leetcode 169. Majority Element(c++实现)
快速排序快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。算法描述快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:从数列中挑出一个元素,称为 “基准”(pivot);重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基...原创 2019-01-06 09:34:27 · 385 阅读 · 0 评论 -
2010水仙花数
#include #include #include int main(){ int m,n; while(scanf("%d%d",&m,&n)!=EOF){ int first=1,count=0; int i,a,b,c; if(m999) break; for(i=m;i<=n;i++){ a=i/100;原创 2015-09-23 20:44:38 · 261 阅读 · 0 评论 -
2012素数判定
#include #include #include int is_prime(int n){ int i,sign=1; for(i=2;i*i<=n;i++){ if(n%i==0) sign=0; } if(sign==0) return 0; else return 1;}int main(){原创 2015-09-23 21:07:02 · 411 阅读 · 0 评论 -
2022海选女主角
#include #include #include #define MAXN 100int a[MAXN][MAXN];int main(){ int m,n,i,j; while(scanf("%d%d",&m,&n)!=EOF){ int s,x,y; int max=0; for(i=0;i<m;i++){原创 2015-09-23 21:32:33 · 490 阅读 · 0 评论 -
2023求平均成绩
#include #include int s[50][10];int stugra[50];double stuaver[50];int cougra[10];double couaver[10];int main(){ int n,m,i,j; while(scanf("%d%d",&n,&m)!=EOF){ for(i=0;i<n;i++){原创 2015-09-24 10:52:32 · 381 阅读 · 0 评论 -
2028最小公倍数
#include #include int a[100];int f(int a,int b){ int c,m,n; if(a<b){ int temp=a; a=b; b=temp; } m=a; n=b; while(b!=0){ c=a%b; a=b;原创 2015-09-24 17:05:55 · 418 阅读 · 0 评论 -
动态规划
动态规划动态规划解题的基本思路新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入动态规划解题的基本思路1.如果...原创 2018-09-24 16:43:17 · 299 阅读 · 0 评论 -
多标签分类算法 MK-KNN: A Lazy Learning approach to Multi-Label Learning
1. 多标签学习多标签学习起源于文本分类问题中遇到的概念歧义的困难,每个文本可能同时属于多个主题。再多标签学习中,训练集由样本同时与多个标签相关,我们的任务是通过分析已知标签集的训练样本来预测未观测样本的标签集。我将在这里介绍一个多标签lazy学习方法–ML-KNN,它是由传统的K-Nearest Neighbor(K最近邻算法)衍生而来。首先,与KNN一样,对于每个未观测样本,找出其训练集中的...原创 2018-11-29 20:08:49 · 3699 阅读 · 1 评论 -
推荐系统:Content-based & Collaborative Filtering
X = set of 顾客S = set of 商品Utility function: X ×\times× S = RR = 打分的集合本文将主要针对以下关键问题进行阐述:(1) 收集矩阵中已知的打分:怎么收集utility matrix中的数据(2) 根据已知的打分推断未知的得分:我们主要关心的是未知的高分项,因为我们只想知道客户喜欢什么而不关心客户不喜欢什么(3) 评估推断方...原创 2019-01-03 19:45:55 · 6178 阅读 · 0 评论 -
leetcode148归并排序 (递归与非递归c++实现)
归并排序:是一种非线性时间比较类排序,采用分治的策略,通过比较来决定元素间的相对次序.时间复杂度不受数据本身影响.c++递归实现:#include&lt;cstdlib&gt;using namespace std;void MergeSort(int* A, int* L, int lenOfL, int* R, int lenOfR){ int i=0, j=0...原创 2019-01-05 17:20:16 · 1605 阅读 · 2 评论 -
2005第几天?
#include #include int s[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};int main(){ int i,y,m,d; while(scanf("%d/%d/%d",&y,&m,&d)!=EOF){ int day=0; if(y%400==0||(y%4==0&&y%10原创 2015-09-23 20:42:54 · 324 阅读 · 0 评论