tensorflow
文章平均质量分 57
yiqingyang2012
从事软件开发10余年,熟悉3GPP无线通信协议以及android系统开发,能cover北美三大运营商以及PTCRB,GCF等认证支持。提供verizon DM认证功能开发支持。
展开
-
文章标题
转自:http://blog.csdn.net/lujiandong1/article/details/53369961队列本身也是图中的一个节点。其他节点(enqueue, dequeue)可以修改队列节点中的内容。#-*- coding:utf-8 -*- import tensorflow as tf #创建的图:一个先入先出队列,以及初始化,出队,+1,入队操作 q = tf.FI转载 2017-03-29 16:02:20 · 448 阅读 · 0 评论 -
tensorflow hook架构
介绍所有的hook都继承自SessionRunHook,定义在session_run_hook.py 文件里。其包含五个通用接口:def begin(self)def after_create_session(self, session, coord)def before_run(self, run_context)def after_run(self, run_context,...原创 2018-04-12 17:32:56 · 7319 阅读 · 0 评论 -
tensorflow variable
1.共享变量例一with tf.device('/cpu:0'): with tf.variable_scope('yiqingyang') as sco: w_1 = tf.get_variable(name="w_1",initializer=1.0) print(w_1) tf.get_variable_scope(...原创 2018-04-05 16:47:00 · 374 阅读 · 0 评论 -
tensorflow seq2seq arch
介绍tensorflow的seq2seq API的使用主要包含下面几步: 1、设置helper 训练时的helper和infer时是不同的,分别如下 #这个help主要是用来决定下一步的输入如何生成的。可以用真实word对应的embeding,也可以从上一步的output logits里采样得到一个y(t-1) train_helper = tf.contrib.se...原创 2018-04-16 16:45:25 · 528 阅读 · 0 评论 -
Categorical Reparameterization with Gumbel-Softmax
下面写如何从多项分布里采样从Gumbel(0;1)分布里采样方法The Gumbel(0; 1) distribution can be sampled using inverse transform sampling。 fristly, drawing u from Uniform(0; 1) and then computing: g = -log(-log(u)).原创 2017-09-11 18:15:12 · 5570 阅读 · 0 评论 -
TensorFlow高效读取数据的方法
转载自:数据读取TFRecords定义TFRecords其实是一种二进制文件,用来保存tf.train.Example 协议内存块(protocol buffer)。一个Example中包含Features,Features里包含一个名字为Feature的字典,里面是(key , value) 对。最后,value是一个 FloatList, 或者ByteList,转载 2017-03-30 10:25:54 · 638 阅读 · 0 评论 -
卷积的输入里串联上标签y
#[batch, 28, 28, 1]shape = x_u_in.get_shape().as_list()##[batch*N, 28, 28, M],y_u的shape是[batch,class_num]y_tiled_u = tf.tile(y_u[:, None, None, :], [1, shape[1], shape[2], 1])#[batch*N, 28, 28, 1]原创 2017-09-12 15:27:32 · 326 阅读 · 0 评论 -
tensorflow API
ehttps://pypi.python.org/pypi/tensorflow install tensorflow in ubuntu14.04 first install anaconda, then input: conda install tensorflow donehttp://blog.csdn.net/u014114990/article/details/5112...原创 2016-12-29 22:42:56 · 996 阅读 · 0 评论 -
Perplexity
calcPerplexity原创 2017-09-13 14:55:43 · 1180 阅读 · 0 评论 -
tensorflow quene queueRunner
转自:http://blog.csdn.net/lujiandong1/article/details/53369961队列本身也是图中的一个节点。其他节点(enqueue, dequeue)可以修改队列节点中的内容。#-*- coding:utf-8 -*- import tensorflow as tf #创建的图:一个先入先出队列,以及初始化,出队,+1,入队操作 q = tf.FI转载 2017-03-29 15:42:08 · 1676 阅读 · 0 评论 -
tf.clip_by_global_norm理解
转载自: http://blog.csdn.net/u013713117/article/details/56281715Gradient Clipping的引入是为了处理gradient explosion或者gradients vanishing的问题。当在一次迭代中权重的更新过于迅猛的话,很容易导致loss divergence。Gradient Clipping的直观作用就是让权重的更新限制转载 2017-04-01 11:57:23 · 2978 阅读 · 0 评论 -
TensorFlow batch
这篇文章写数据读取,包含了线程以及batch的概念1、准备数据,构造三个文件,A.csv,B.csv,C.csv$ echo -e "Alpha1,A1\nAlpha2,A2\nAlpha3,A3" > A.csv $ echo -e "Bee1,B1\nBee2,B2\nBee3,B3" > B.csv $ echo -e "Sea1,C1\nSea2,C2\nSea3,C3" > C.c转载 2017-03-30 12:03:45 · 4196 阅读 · 1 评论 -
维特比算法以及解码时的beamSearch
维特比算法输入序列为词,输出序列为POS,采用HMM为例介绍维特比算法 这里HMM假设当前的输出只和上一时刻的输出状态相关。 迭代公式如下: π(t,i,j)=max(π(t−1,i)×q(j|i)×e(xt|j))" role=&原创 2017-01-23 12:04:23 · 3471 阅读 · 0 评论