yiqingyang2012
从事软件开发10余年,熟悉3GPP无线通信协议以及android系统开发,能cover北美三大运营商以及PTCRB,GCF等认证支持。提供verizon DM认证功能开发支持。
展开
-
混合高斯模型
高斯混合原创 2016-12-06 22:52:39 · 627 阅读 · 0 评论 -
LDA整体流程
LDA原创 2016-07-29 16:48:54 · 4207 阅读 · 0 评论 -
启发式算法greedy heuristic、贪心算法
一般来说,我们碰到一个需要解决的问题,第一步是建立一个问题的模型,通过给出优化目标、约束条件、决策变量等方式来对问题从数学层面进行描述。然后我们就可以通过所学的线性规划、凸优化等方式对问题进行求解了。而通过上述方式求的的解,一般会是全局的最优解。而数学模型的复杂程度,会导致该问题的求解无法在多项式时间内完成,随着求解问题规模的增大,算法耗费的时间开始以指数,甚至更高的阶次飞增,也就是一般所谓的NP-转载 2017-03-24 20:07:54 · 11381 阅读 · 0 评论 -
sentiment treebank
https://nlp.stanford.edu/sentiment/code.html 包含了如何运行stanford的pipline来实现 treebank的形式如下 (0 (1 You) (2 (3 can) (4 (5 (6 run) (7 (8 this) (9 code))) (10 (11 with) (12 (13 (14 our) (15 (16 trained) (17 m原创 2017-03-23 17:21:11 · 2998 阅读 · 2 评论 -
NLP专业术语
hyper-parameters:在训练模型时,有些参数是需要手动设置的,每个参数有一个可选的范围或者列表可供训练,可以调用sklearn的GridSearchCV函数来自动统计搜索。http://blog.csdn.net/u010454729/article/details/50754460development set:在paper中也简写成dev。一般在训练模型时需要用到交叉验证,这部分用来原创 2016-11-10 22:22:30 · 1994 阅读 · 0 评论 -
文章标题
词典创建 1.1、现成的词典1.1.1、NRC Emotion Lexicon(Mohammad & Turney, 2010):annotated for eight emotions (joy, sadness, anger, fear, disgust, surprise, trust, and anticipation) as well as for positive and negati原创 2017-02-14 11:32:25 · 464 阅读 · 0 评论 -
概率知识
概率原创 2016-12-09 16:28:47 · 392 阅读 · 0 评论 -
word representation
word representation glove原创 2016-12-08 11:04:12 · 959 阅读 · 0 评论 -
Multi class ovr or ovo
one-versus-rest和one-versus-one的不同 SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。 目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类。这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适转载 2016-12-02 17:37:45 · 5121 阅读 · 0 评论 -
memory network
memory network原创 2016-11-14 14:37:43 · 356 阅读 · 0 评论 -
sentiment analysis
sentiment原创 2016-11-13 16:51:52 · 885 阅读 · 0 评论 -
算法工具包
工具包原创 2016-11-13 00:46:49 · 474 阅读 · 0 评论 -
entity识别
A Bootstrapping Method for Learning Semantic Lexicons using Extraction Pattern Contexts 输入:1,不同种类的种子集合;2,语料库首先用autoslog从语料库中抽取所有相关的模式,这些模式都只是用来识别名词。启发式的抽取pattern的规则定义入下图 然后用这些模式从语料库里抽取所有的名词,将模式以及抽原创 2016-09-19 19:35:28 · 471 阅读 · 0 评论 -
对比性句子sentiment analysis
class sequential rules:左边是一个有序的规则,右边是一个分类标签 用I:{i1i_{1},i2i_{2},i3i_{3},i4i_{4}…ini_{n}}代表左边的规则定义里可选的字符.一个sequence就是由从上面集合中抽出来的一个个小集合有序的组合而成用s:<a1a_{1},a2a_{2}…ara_{r}>,其中aia_{i}是{…}的形式,是I的一个子集。每个子集中的原创 2016-09-11 15:41:21 · 587 阅读 · 0 评论 -
linear regression
一个训练集合S 有M个训练样本(xi,yi)(x_{i},y_{i}),其中x为你维的变量。用一次线性假设: hΘ(x)=Θ0+Θ1x1+...+Θnxn=ΘTxh_{\Theta }(x)=\Theta _{0}+\Theta _{1}x_{1}+...+\Theta _{n}x_{n}=\Theta ^{T}x 则对于整个训练集合,costfunction为: J(Θ)=12∑i=1M(h原创 2016-03-01 00:22:05 · 366 阅读 · 0 评论 -
维特比算法以及解码时的beamSearch
维特比算法输入序列为词,输出序列为POS,采用HMM为例介绍维特比算法 这里HMM假设当前的输出只和上一时刻的输出状态相关。 迭代公式如下: &amp;amp;#x03C0;(t,i,j)=max(&amp;amp;#x03C0;(t&amp;amp;#x2212;1,i)&amp;amp;#x00D7;q(j|i)&amp;amp;#x00D7;e(xt|j))&amp;quot; role=&原创 2017-01-23 12:04:23 · 3471 阅读 · 0 评论