Learning Spark [4] - Spark SQL

Spark SQL为Spark提供了以下几个特性:

  • 提供高级结构框架的API(见Learning Spark [3])
  • 允许读取不同格式的数据(json, hive, tables, csv, parquet, avro,orc)
  • 允许使用BI工具(Power BI, Tableau)的JDBC/ODBC链接器查询数据,以及使用RDBMSs(MySQL, PostgreSQL)
  • 提供与储存在Spark Application的数据交互的语法接口
  • 提供一个交互式Shell去执行SQL查询
  • 支持HiveQL
    Spark SQL连接器 & 数据源

例子:基础查询

# Basic Query Example
import os
from pyspark.sql import SparkSession
from pyspark import SparkFiles
os.chdir('D:/Users/fyrli/Desktop/R work/learning spark/chapter 4')
spark = (SparkSession
         .builder
         .appName('SparkSQLExampleApp')
         .getOrCreate())
# path to data set
departure_delays = 'departuredelays.csv'
# Read & Create a Temp View
df = spark.read.csv(departure_delays, header = True, inferSchema = True)
df.createOrReplaceTempView('us_delay_flights_tbl')
df.show(n = 5)
+-------+-----+--------+------+-----------+
|   date|delay|distance|origin|destination|
+-------+-----+--------+------+-----------+
|1011245|    6|     602|   ABE|        ATL|
|1020600|   -8|     369|   ABE|        DTW|
|1021245|   -2|     602|   ABE|        ATL|
|1020605|   -4|     602|   ABE|        ATL|
|1031245|   -4|     602|   ABE|        ATL|
+-------+-----+--------+------+-----------+

这个数据集有五列:

  • date为航班日期,String格式,可以转换为日期格式,例如: 02190925对应02-19 09:25am
  • delay为延误时间,单位为分钟,负数代表提前出发
  • distance为航班的飞行距离
  • origindestination代表起飞和降落机场
    查询distance大于1000英里的航班:
spark.sql("""
    SELECT date, distance, origin, destination        
    FROM us_delay_flights_tbl
    WHERE distance >= 1000
    ORDER BY distance DESC""").show(10)
+-------+--------+------+-----------+
|   date|distance|origin|destination|
+-------+--------+------+-----------+
|3131530|    4330|   HNL|        JFK|
|3071625|    4330|   HNL|        JFK|
|3121530|    4330|   HNL|        JFK|
|3021625|    4330|   HNL|        JFK|
|3061625|    4330|   HNL|        JFK|
|3081530|    4330|   HNL|        JFK|
|3091530|    4330|   HNL|        JFK|
|3011625|    4330|   HNL|        JFK|
|3151530|    4330|   HNL|        JFK|
|3051625|    4330|   HNL|        JFK|
+-------+--------+------+-----------+
only showing top 10 rows

查询所有再SFO和ORD延误了两小时以上的航班

spark.sql("""
    SELECT date, delay, origin, destination 
    FROM us_delay_flights_tbl 
    WHERE delay > 120 AND ORIGIN = 'SFO' AND DESTINATION = 'ORD' 
    ORDER by delay DESC""").show(10)
+-------+-----+------+-----------+
|   date|delay|origin|destination|
+-------+-----+------+-----------+
|2190925| 1638|   SFO|        ORD|
|1031755|  396|   SFO|        ORD|
|1022330|  326|   SFO|        ORD|
|1051205|  320|   SFO|        ORD|
|1190925|  297|   SFO|        ORD|
|2171115|  296|   SFO|        ORD|
|1071040|  279|   SFO|        ORD|
|1051550|  274|   SFO|        ORD|
|3120730|  266|   SFO|        ORD|
|1261104|  258|   SFO|        ORD|
+-------+-----+------+-----------+
only showing top 10 rows

添加一列case when来判断delay的类型

spark.sql("""
    SELECT delay, origin, destination,              
        CASE WHEN delay > 360 THEN 'Very Long Delays'                  
             WHEN delay > 120 AND delay < 360 THEN 'Long Delays'                  
             WHEN delay > 60 AND delay < 120 THEN 'Short Delays'                  
             WHEN delay > 0 and delay < 60 THEN 'Tolerable Delays'                  
             WHEN delay = 0 THEN 'No Delays'                  
             ELSE 'Early'               
        END AS Flight_Delays               
    FROM us_delay_flights_tbl               
    ORDER BY origin, delay DESC""").show(10)
+-----+------+-----------+-------------+
|delay|origin|destination|Flight_Delays|
+-----+------+-----------+-------------+
|  333|   ABE|        ATL|  Long Delays|
|  305|   ABE|        ATL|  Long Delays|
|  275|   ABE|        ATL|  Long Delays|
|  257|   ABE|        ATL|  Long Delays|
|  247|   ABE|        ATL|  Long Delays|
|  247|   ABE|        DTW|  Long Delays|
|  219|   ABE|        ORD|  Long Delays|
|  211|   ABE|        ATL|  Long Delays|
|  197|   ABE|        DTW|  Long Delays|
|  192|   ABE|        ORD|  Long Delays|
+-----+------+-----------+-------------+
only showing top 10 rows

以下的Python代码类似以上的第一条SQL查询

(df.select('distance', 'origin', 'destination')
     .where(col('distance') > 1000)
     .orderBy(desc('distance'))).show(10)

建立SQL数据库和表

默认情况下,Spark会把表建立再default库里。接下来使用美国飞机延误数据,建立一个managed和一个unmanaged table。

  • managed table,Spark会管理数据以及文件储存
  • unmanaged table,Spark仅会管理数据
    首先我们建立一个库,并使用它:
spark.sql('CREATE DATABASE learn_spark_db')
spark.sql('USE learn_spark_db')

managed table

spark.sql(""" 
    CREATE TABLE managed_us_delay_flights_tbl 
    (date STRING, dalay INT, distanct INT, origin STRING, destination STRING)""")

unmanaged table

spark.sql("""
    CREATE TABLE us_delay_flights_tbl
    (date STRING, delay INT,   distance INT, origin STRING, destination STRING)   
    USING csv OPTIONS (PATH '/databricks-datasets/learning-spark-v2/flights/departuredelays.csv')
""") 

Reference
Learning Spark 2nd - Lightning Fast Big Data Analysis by Jules S. Damji, Brooke Wenig, Tathagata Das, and Denny Lee

### 回答1: Spark SQLSpark中用于处理结构化数据的模块。它提供了一种基于DataFrame和SQL的编程接口,可以方便地进行数据分析和处理。Spark SQL支持多种数据源,包括Hive、JSON、Parquet等,可以通过SQL语句或DataFrame API进行数据查询和操作。Spark SQL还支持用户自定义函数(UDF)和聚合函数(UDAF),可以满足更复杂的数据处理需求。Spark SQL的优势在于它可以与Spark的其他模块无缝集成,如Spark Streaming、MLlib等,可以构建完整的数据处理和分析流程。 ### 回答2: 本篇笔记主要是介绍Spark SQL的基本概念和编程模型。 Spark SQL是面向Spark计算引擎的一种高性能的分布式数据处理技术,它提供一种基本的高度抽象的编程模型,使得开发大规模的数据仓库和数据分析应用变得容易和高效。 Spark SQL最核心的概念就是DataFrames,DataFrame是RDD的超集,提供了更高层次的抽象和对数据的结构化的处理能力,在数据处理的过程中常常会用到一些基本的操作:过滤、选择、聚合、排序等等,而这些操作都可以一步一步地以DataFrame为基础完成。 在使用Spark SQL的过程中,可以通过DataFrame API和Spark SQL语言两种方式进行编程。DataFrame API是Spark SQL提供的一种编程API,它提供了常见的操作,如选择、过滤和聚合等。而Spark SQL语言则是一种基于SQL的编程语言,和传统的SQL查询语言类似,可以通过SQL查询语句来对数据进行查询和操作。Spark SQL可以支持多种数据源,包括JSON、Parquet、ORC、Hive、JDBC等等,因此可以轻松地读取和处理不同类型的数据源。 Spark SQL还提供了高级的功能,如User-Defined Functions(UDFs)、Window Functions和Structured Streaming等等。UDFs允许开发者自定义函数并在Spark SQL中使用,将SQL和代码结合起来,提高了处理数据的灵活性和可扩展性;Window Functions则是一种用来进行滑动窗口操作的函数,常常用于计算数据的局部或全局统计量;Structured Streaming提供了数据流处理的能力,并且实现了端到端的Exactly-Once语义。 总之,Spark SQL提供了很多的功能和便利,特别是在大数据处理和分析领域,它的优势尤为突出。结合Spark的强大计算能力和Spark SQL的抽象编程模型,在大规模的数据分析和仓库方面都具有非常高的可扩展性和灵活性。 ### 回答3: Spark SQLSpark生态系统中的一个组件,它负责处理结构化数据。它提供了SQL查询和DataFrame API,可以从不同的数据源中读取和处理数据。Spark SQL能够理解SQL语言,这使得开发人员可以使用传统的SQL查询方式来处理数据,同时还可以利用Spark的优势,例如分布式计算和内存缓存。 Spark SQL支持许多不同类型的数据源,包括Hive表、传统的RDD、Parquet文件、JSON文件、CSV文件和JDBC数据源等。Spark SQL可以通过使用数据源API将这些数据源加载到Spark中,然后可以在Spark中处理和查询这些数据。 Spark SQL还支持特定于数据源的优化器和执行引擎,这允许Spark SQL针对不同的数据源执行优化操作。例如,使用Hive数据源时,Spark SQL会使用Hive的元数据来优化查询计划。当使用Parquet文件格式时,Spark SQL会使用Parquet文件中的元数据来优化查询计划。 在Spark SQL中,DataFrame是一种非常重要的概念。它是一种强类型的分布式数据集,可以使用DataFrame API进行操作。DataFrame API是一种更面向数据的API,例如过滤数据、聚合数据等。Spark SQL中的DataFrame可以看作是类似于表的对象,它可以和Spark SQL中的SQL查询混合使用。 除了DataFrame API和SQL查询,Spark SQL还支持UDF(用户自定义函数)。UDF允许用户在SQL查询或DataFrame API中定义自己的函数,以实现更复杂的数据操作。使用UDF时,用户可以使用累加器和广播变量等Spark的分布式计算功能,使得UDF具备高性能和可伸缩性。 总之,Spark SQL大数据处理领域中一种非常方便和强大的处理结构化数据的工具。它可以方便地与其他Spark组件结合使用,例如Spark Streaming、Spark MLlib等。使用Spark SQL,开发人员可以在不同的数据源之间轻松地查询和转换数据,并利用Spark分布式计算的优势,实现高性能和可伸缩性的数据处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值