题目:图的深度优先遍历
问题描述
已知无向图的邻接矩阵,以该矩阵为基础,给出深度优先搜索遍历序列,并且给出该无向图的连通分量的个数。在遍历时,当有多个点可选时,优先选择编号小的顶点。(即从顶点1开始进行遍历)
输入格式
第一行是1个正整数,为顶点个数n(n<100),顶点编号依次为1,2,…,n。后面是邻接矩阵,n行n列。
输出格式
共2行。第一行输出为无向图的深度优先搜索遍历序列,输出为顶点编号,顶点编号之间用空格隔开;第二行为无向图的连通分量的个数。
样例输入
6
0 1 0 0 0 0
1 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 1
0 0 0 0 1 0
样例输出
1 2 5 6 3 4
2
#include<iostream>
#include<cstdlib>
#include<cstdio>
bool visited[101];
int mat[101][101];
void DFS(int v, int n);
void DFSTraverse(int n);
using namespace std;
int main() {
int n, i, j;
cin >> n;
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {
cin >> mat[i][j];
}
}
DFSTraverse(n);
return 0;
}
void DFS(int v, int n) {
visited[v] = true;
cout << v<<" ";
for (int i = 1; i <= n; i++) {
if (visited[i] == false && mat[v][i] == 1) {
DFS(i, n);
}
}
}
void DFSTraverse(int n) {
int i;
int count = 0;
for (i = 1; i <= n; i++) {
visited[i] = false;
}
for (i = 1; i <= n; i++) {
if (visited[i] == false) {
DFS(i, n);
count++;
}
}
cout << endl << count << endl;
}
ps:如有错误敬请指正,如有问题欢迎评论区讨论或私信。如果未及时回复请微信私聊我。
微信号: z1654407501
如果对你有用的话,请点赞并关注支持一波.