- 博客(10)
- 收藏
- 关注
原创 J1深度学习实验:ResNet-50算法实战与解析
上周,我们YOLOv5-Backbone模块实现。这周我们要用经典的CNN模型ResNet50做,骨炎检测实验。
2025-07-04 07:16:04
395
原创 P9深度学习实验:YOLOv5-Backbone模块实现
上周,我们搭建了包括C3模块的模型,用来预测天气数据集。这周我们将复现yolov5 backbone的架构来对天气进行预测。yolov5 除了backbone模块以外,还有neck和head。因为我们并不需要做多个目标检测和解码,我们只需要关注backbone的解码部分,只负责特征提取。
2025-06-27 02:02:14
427
原创 P8深度学习实验:YOLOv5-C3模块实现
上周,我们理论部分我们讨论了 transformer 模型;实验部分我们实践了用VGG-16模型实现马铃薯病害辨识。这周,我们将自己搭建 YOLOv5 - C3 实现天气预测。
2025-06-06 14:21:15
238
原创 P7深度学习实验:马铃薯病害辨识(VGG-16复现)
上周我们介绍了一种叫“自注意力机制”的方法。它的作用是:在处理像句子这样的序列时,每个词不只是看自己,还会参考整个句子中其他词的信息,从而更好地理解上下文。在此基础上,还有一种叫“多头注意力”的方法,相当于从多个角度去看同一句话,帮助模型理解得更全面。由于这类方法本身不关心词的顺序,所以我们还讲了“位置编码”,用来告诉模型词在句子中的位置,避免语义混乱。我们也简单比较了传统的卷积神经网络(CNN)和注意力机制。CNN结构更简单、不容易出错,而注意力机制更灵活,但也更容易受数据影响,尤其在数据量不大时。
2025-05-30 21:19:04
311
原创 P6深度学习实验:VGG-16算法-Pytorch实现人脸辨识
本周理论课聚焦于深度学习的核心优化理论。我们首先指出,梯度为零不一定意味着极小值,可能是鞍点。通过计算偏导与构建海森矩阵,可借助其特征值判断点的性质。若存在正负特征值,则该点为鞍点,可通过沿负特征值方向更新逃离。随后,我们探讨了不同批量大小对梯度下降的影响。全批量方法更新频率低但稳定,计算成本高;小批量方法尽管引入噪声,却在泛化能力与跳出局部最优方面更具优势。为提升训练表现,我们结合动量法、自适应学习率(如 AdaGrad、RMSProp)与学习率调度等策略,引导模型高效收敛并减少震荡或停滞风险。
2025-05-23 22:41:10
388
原创 P5深度学习实验:Pytorch实现运动鞋辨识
图像分类是深度学习入门的重要任务,而卷积神经网络(CNN)在其中发挥着关键作用。本项目聚焦于运动鞋图像识别,使用的是我们自行采集和标注的彩色图像数据集。该数据集包含多种角度、背景和光照条件下拍摄的运动鞋图片,较公开数据集如 MNIST 或 CIFAR-10 更贴近真实应用场景,具有更高的复杂性和挑战性。我们基于 PyTorch 构建了一个卷积神经网络模型,完成了从图像预处理、模型设计与训练,到准确率评估与结果可视化的完整流程。
2025-05-09 14:24:06
1078
原创 P4深度学习实验:猴痘病识别
图像分类是深度学习入门的重要任务,而卷积神经网络(CNN)在其中发挥着关键作用。本项目聚焦于猴痘病图像识别,使用的是包含多种皮肤病变类型的彩色图像数据集,相比 MNIST 等简单数据集更具复杂性和现实意义。我们基于 PyTorch 构建了一个 CNN 模型,完成了从数据预处理、模型训练到测试预测的完整流程。该项目不仅加深了我们对图像分类技术的理解,也为今后探索医学图像分析打下了基础。
2025-05-02 20:43:22
359
原创 P3深度学习实验:Pytorch实现天气识别
在深度学习的入门阶段,图像分类是理解卷积神经网络(CNN)应用的关键任务之一。本项目使用了一个包含多种天气类型的彩色图像数据集,与此前使用的灰度图像如 MNIST 相比,具有更高的复杂度和挑战性。我们通过 PyTorch 构建了一个天气识别模型,完成了从数据加载、模型设计到训练与评估的完整流程。作为第一个使用自定义彩色图像数据集的项目,这次实践不仅加深了我们对CNN的理解,也为应对更复杂的视觉任务打下了基础。目录前言1. 实验概述1.1 卷积神经网络1.1.1 滤波器1.1.2 下采样。
2025-04-25 21:58:14
868
原创 P2深度学习实验--CIFAR10彩色图片识别
在深度学习的入门学习中,CIFAR-10是一个经典的彩色图像分类数据集。和上周P1项目使用的MNIST数据集相比,它更具挑战性,图像分辨率更高,类别更加多样,有助于我们进一步理解卷积神经网络在真实图像任务中的应用。本项目使用PyTorch实现了一个CIFAR-10图像识别模型。涵盖了数据加载、模型构建、训练与测试、损失与准确率计算等完整流程。同时是我们即将实现的第一个彩色图像识别项目,标志着从简单手写数字识别迈向更复杂视觉任务的重要一步。目录前言1. 卷积神经网络1.1 模型概况。
2025-04-18 19:17:17
926
原创 P1深度学习实验--Pytorch实现mnist手写数字识别
在深度学习的入门学习中,MNIST是最经典是数据集之一。它的结构简单,但能够帮助我们快速理解神经网络的核心流程。本项目使用PyTorch实现了一个手写数字识别模型。涵盖了数据加载、模型构建,训练测试和损失计算等完成流程。同时是我分享的第一个图像分类的小项目。本次实验的核心目标是使用 PyTorch 实现对 MNIST 手写数字的识别任务。我们首先完成了数据加载,包括数据集的下载、导入和预处理,确保模型能够接收并处理标准化的图像输入。
2025-04-11 13:04:40
1286
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅