P4深度学习实验:猴痘病识别

前言

  • 图像分类是深度学习入门的重要任务,而卷积神经网络(CNN)在其中发挥着关键作用。

  • 本项目聚焦于猴痘病图像识别 ,使用的是包含多种皮肤病变类型的彩色图像数据集,相比 MNIST 等简单数据集更具复杂性和现实意义。

  • 我们基于 PyTorch 构建了一个 CNN 模型,完成了从数据预处理、模型训练到测试预测的完整流程。

  • 该项目不仅加深了我们对图像分类技术的理解,也为今后探索医学图像分析打下了基础。

代码实现

1. 数据可视化

import matplotlib.pyplot as plt
import os
from PIL import Image

# 图像文件夹路径
image_folder = r'D:\DL_Bootcamp\P4\data\Monkeypox'

# 获取所有图像文件名
image_files =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值