Analysis of Algorithms课堂练习一

当n趋于无穷大时,依照从小到大的顺序给下列数字排序:
1、 n l o g n nlog n nlogn
2、 n \sqrt{n} n
3、 l o g n log n logn
4、 n 2 n^{2} n2
5、 2 n 2^{n} 2n
6、 n n n
7、 n ! n! n!
8、 n 1 , 000 , 000 n^{1,000,000} n1,000,000
9、 n 1 l o g n n^{\frac{1}{logn}} nlogn1
10、 l o g n ! log n! logn!

个人思路:

首先,选个最小的出来,一眼看过去就第9个看起来非常小,不像其他数动不动就无穷大。那么让俺算算这数的大小。
对这个数取对数,得: l o g ( n 1 l o g n ) = 1 l o g n l o g n = 1 log(n^{\frac{1}{logn}})=\frac{1}{logn}logn=1 log(nlogn1)=logn1logn=1
则: n 1 l o g n = e n^{\frac{1}{logn}}=e nlogn1=e
显然,第九个数确实是最小的。

接下来比较下看起来也不大的 n \sqrt{n} n l o g n log n logn,将他们相除:
lim ⁡ x → ∞ l o g n n \lim_{x \to \infty}\frac{logn}{\sqrt{n}} xlimn logn
因为分子分母都趋于无穷,所以可以来一发洛必达:
lim ⁡ x → ∞ 1 n 1 2 n = lim ⁡ x → ∞ 2 n = 0 \lim_{x \to \infty}\frac{\frac{1}{n}}{\frac{1}{2\sqrt{n}}}=\lim_{x \to \infty}\frac{2}{\sqrt{n}}=0 xlim2n 1n1=xlimn 2=0
所以, n \sqrt{n} n 大于 l o g n log n logn
接着的是n,然后我们知道 n 2 n^{2} n2肯定比 n l o g n nlog n nlogn大,但 n l o g n nlog n nlogn l o g n ! log n! logn!的大小我们却无法直接得出,这就需要我们进行计算。
已知斯特林公式为:
在这里插入图片描述
于是我们可以将 n l o g n nlog n nlogn l o g n ! log n! logn!两个数相除,得:
在这里插入图片描述
因此,我们得到 n l o g n nlog n nlogn l o g n ! log n! logn!大小相等。
最后, n 1 , 000 , 000 n^{1,000,000} n1,000,000是有限次方,一定小于 2 n 2^{n} 2n。然后将 2 n 2^{n} 2n拆分为n个2相乘, n ! n! n!拆分为 1 × 2 × 3 × ⋅ ⋅ ⋅ × n 1\times2\times3\times···\times n 1×2×3××n,逐一比较两者的子项,发现 2 n 2^{n} 2n小于 n ! n! n!

综上,我们可以得出结论:
9,3,2,6,1=10,4,8,5,7

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值