zoj2674 Strange Limit 欧拉函数的应用

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010682557/article/details/16344879

做了一个下午的题目,感觉好难,转载一下 分析过程

http://www.cnblogs.com/ybrbupt/archive/2011/08/31/2161372.html

大意:求aa..a%m!的极限。

欧拉定理的内容是:如果a和n互质,那么aφ(n)=1(mod n);对于任意a, n和较大的b,有a^b=a^(φ(n)+b) modφ(n)(mod n)

我们设aa..a=A

则有A=aφ(n)+A mod φ(n)(mod n)

这样就可以递归求解。因为φ(n)<n,所以这样递归一定有边界。

接下来就是上欧拉函数模版,素数筛模版了。。

另:要用longlong,不然会悲剧。。

PS:还跟watashi大神学习了每组数据之间分空行,最后一组数据后面没有空行怎么打的问题~~

以上是一个博客里的分析,至于那句b较大可以推出另一个公式 可以看这里,AC大神曾经证过:http://blog.csdn.net/jayye1994/article/details/9631031

一开始做 直接套了以前的模版结果SF了,因为 12!已经超了能开数组的最大范围了所以SF,贴一下SF的代码

#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>

#define ll long long
#define LL __int64
#define eps 1e-8

//const ll INF=9999999999999;

#define inf 0xfffffff

using namespace std;

//vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p;
//
//vector<int>G[30012];

//筛选法 同时求出了n以内的素数

const int N=300010;

ll phi[N+10];//sum[N+10];
bool prime[N+10];
void init()
{
	ll i,j;
	memset(prime,true,sizeof(prime));
	prime[0]=prime[1]=false;
	for(i=2;i*i<=N;i++)
	{
		if(prime[i])
		{
			for(j=i*i;j<=N;j+=i)
			{
				prime[j]=false;
			}
		}
	} //这段求出了N内的所有素数
	for(i=1;i<=N;i++)
	{
		phi[i]=i;
	}
	//sum[0]=0;
	//sum[1]=phi[1];
	for(i=2;i<=N;i++)
	{
		if(prime[i])
		{
			for(j=i;j<=N;j+=i)
			{
				phi[j]=phi[j]/i*(i-1); //此处注意先/i再*(i-1),否则范围较大时会溢出
			}
		}
		//sum[i]=sum[i-1]+phi[i];
	}
}//这段求出了N内所有数的欧拉函数值


ll fac(ll m)//求m!
{
	ll ans=1;
	for(ll i=2;i<=m;i++)
		ans*=i;
	return ans;
}

ll quick(ll p,ll n,ll m)
{
	if(n==0)
		return 1%m;
	if(n==1)
		return p%m;
	p%=m;
	ll ans=quick(p,n/2,m)%m;
	ans=(ans*ans)%m;
	if(n&1)
		ans=ans*p%m;
	return ans%m;
}

ll cal(ll p,ll m)
{
	if(m==1)
		return 0;
	else
	{
		ll tmp=phi[m];
		return quick(p,tmp,m)*quick(p,cal(p,tmp),m);
	}
}

int main(void)
{
	init();
	ll p,m;
	bool flag=false;
	while(~scanf("%lld %lld",&p,&m))
	{
		ll MOD=fac(m);
		if(flag)
			puts("");
		if(MOD==1)
			printf("%d\n",0);
		else
		{
			ll ans=cal(p,MOD)%MOD;
			printf("%lld\n",ans);
		}
		flag=true;
	}
}

以上是 SF的代码,其实主要思路都对了 ,主要是 求欧拉函数值的问题,由于m最大为12,12!已经超了能开的数组最大范围了,就是能开我也觉的 爆内存,所以要有其它的求的方法,根据欧拉函数基本性质 有一个直接求值的 函数,但是那个很耗时间,当然可以过本题,希望时间降到最小,最后参考了  人家的 写了个出来,他是先求出 3000以内的素数保存起来,然后求欧拉函数值就会快很多,这个求素数的 函数 跟 求欧拉函数值的 函数 其实完全可以作为模版保存起来,肯定是一个 很常用的方法,保存下来 以后多种方法

#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>

#define ll long long
#define LL __int64
#define eps 1e-8

const ll INF=9999999999999;

#define inf 0xfffffff

using namespace std;


//vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p;
//
//vector<int>G[30012];

const int N=30010;

ll prime[3012];
bool isprime[N];
ll cnt;

void init()//这段求出了N内的所有素数
{
	ll i,j;
	for(i=2;i<=N;i++)
	{
		if(!isprime[i])
			prime[cnt++]=i;
		for(j=0;j<cnt && i*prime[j]<=N;j++)
		{
			isprime[i*prime[j]]=true;
		}
	} 
	cnt--;
	isprime[1]=true;
}

ll euler(ll n)//这里利用上面求出来的 素数来进行求解就会快很多,
{
	ll i;
	ll tempn=n;
	ll ans=n;
	for(i=0;i<=cnt && prime[i]*prime[i]<=n;i++)
	{
		if(n%prime[i]==0)
		{
			ans=ans/prime[i]*(prime[i]-1);
			while(tempn%prime[i]==0)
				tempn/=prime[i];
		}
	}
	if(tempn>1)
		ans=ans/tempn*(tempn-1);
	return ans;
}

ll fac(ll m)//求m!
{
	ll ans=1;
	for(ll i=2;i<=m;i++)
		ans*=i;
	return ans;
}

ll quick(ll a, ll b,ll m)
{
	ll ans=1;
	while(b)
	{
		if(b&1)
		{
			ans=(ans*a)%m;
			b--;
		}
		b/=2;
		a=a*a%m;
	}
	return ans;
}

ll cal(ll p,ll m)
{
	if(m==1)
		return 0;
	else
	{
		ll tmp=euler(m);
		return quick(p,tmp,m)*quick(p,cal(p,tmp),m);
	}
}

int main(void)
{
	init();
	ll p,m;
	bool flag=false;
	while(~scanf("%lld %lld",&p,&m))
	{
		ll MOD=fac(m);
		if(flag)
			puts("");
		if(MOD==1)
			printf("%d\n",0);
		else
		{
			ll ans=cal(p,MOD)%MOD;
			printf("%lld\n",ans);
		}
		flag=true;
	}
}



阅读更多
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页