POJ3254 Corn Fields 状态压缩DP

看了这位博主的经历

http://blog.csdn.net/lenleaves/article/details/7972224

感觉有些差不多,因为CF比赛状压被虐 所以开始刷刷题,从最简单的开始复习吧,细节处理很差,唉


DP方程跟一般的有些不一样,dp[i][j]表示在状态i的情况下 到第j行的摆放有多少种,然后总数就是 dp[i][n - 1]求和,以第一行为边界往下推,第一行边界值为1,因为从第一行开始当前状态当然就一种摆法了,可是原图本身就有些地方能放不能放的,一开始放在一起处理了很烦弄不清楚了,后来看了别人的,先处理掉原图的合法不合法,看来我太年轻,这样接下来就很清晰了,当然题目说 每一行都不放也是一种状态,一开始给看漏了,结果一直案例跑错,还以为推错了,看方程看了半年


#define MOD 100000000

int n,m,cnt;

int mp[15];
int aa[1<<15];
int dp[1<<15][15];

void init() {
	memset(mp,0,sizeof(mp));
	memset(dp,0,sizeof(dp));
	memset(aa,0,sizeof(aa));
}

bool input() {
	while(scanf("%d %d",&n,&m) == 2) {
		for(int i=0;i<n;i++)
			for(int j=0;j<m;j++){
				int x;
				scanf("%d",&x);
				if(x == 0)mp[i] |= (1<<(m - j - 1));//不能放的拎出来
			}
			return false;
	}
	return true;
}

bool isok1(int x) {
	if(x&(x<<1))return 0;//判相邻两列
	return 1;
}

bool isok2(int x,int i) {
	if(x&mp[i])return 0;
	return 1;
}

void cal() {
	cnt = 0;
	for(int i=0;i<(1<<m);i++) 
		if(isok1(i))aa[cnt++] = i;//先把与原图就冲突的给排掉留下合法的
	for(int i=0;i<cnt;i++)
		if(isok2(aa[i],0))dp[aa[i]][0] = 1;
	for(int i=1;i<n;i++) {
		for(int j=0;j<cnt;j++) {
			if(!isok2(aa[j],i))continue;
			for(int k=0;k<cnt;k++)//一开始这里令j != k因为相邻两行状态肯定不一样,可是忽略了两行都可以不放 
				if(isok2(aa[k],i - 1) && !(aa[k]&aa[j])/*判上下行是否合法*/)
					dp[aa[j]][i] = (dp[aa[j]][i] + dp[aa[k]][i - 1])%MOD;
		}
	}
}

void output() {
	int ans = 0;
	for(int i=0;i<cnt;i++)
		ans = (ans + dp[aa[i]][n - 1])%MOD;
	cout<<ans<<endl;
}

int main () {
	while(true) {
		init();
		if(input())return 0;
		cal();
		output();
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值