[Leetcode 234] Palindrome Linked List

题目

这里写图片描述
判断一个单向链表是否是回文链表,要求在O(n)的时间复杂度,O(1)的空间复杂度。

分析

方法一:利用栈先进后出的性质,将链表的前半段压入栈中,在逐个弹出与链表后半段比较,时间复杂度O(n),但需要n/2的栈空间,空间复杂度为O(n);
方法二:翻转链表法,将链表后半段原地翻转,再将前半段、后半段依次比较,判断是否相等,时间复杂度为O(n),空间复杂度为O(1),满足题目要求。

代码

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    bool isPalindrome(ListNode* head) {
        if(head==NULL || head->next==NULL){
            return true;
        }

        ListNode* quick = head;
        ListNode* slow = head;
        while(quick!=NULL && quick->next!=NULL){
            slow = slow->next;
            quick = quick->next->next;
        }

        ListNode* start = NULL;
        ListNode* tmp = NULL;
        while(slow != NULL){
            tmp = slow->next;
            slow->next = start;
            start = slow;
            slow = tmp;
        }

        while(start != NULL){
            if(head->val != start->val){
                return false;
            }
            head = head->next;
            start = start->next;
        }
        return true;
    }
};
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值