老卫带你学--- ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory

使用cuda+tensorflow-gpu进行高速计算的时候,有个坑,那就是cuda一定要对应tensorflow-gpu的版本。

比如你的cuda是9.0,那么你就不能使用最新的tensorflow-gpu(最新的版本对应的是cuda10.0),你需要下载对应版本的tensorflow-gpu。

那么以下就是不同的tensorflow-gpu对应的cuda的版本,一定要对上,否则会出现这样的错误

ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory 

另外如果你的cuda不是8.0/9.0/10.0 ,那么你就需要再继续下载对应的cuda版本,这里请看老卫的另外一篇博客:

老卫带你学—cuda多版本切换

参考官网地址**(请点开阅读更多)**:

Windows端:https://tensorflow.google.cn/install/source_windows

CPU

VersionPython versionCompilerBuild tools
tensorflow-1.11.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.10.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.9.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.8.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.7.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.6.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.5.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.4.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.3.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.2.03.5-3.6MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.1.03.5MSVC 2015 update 3Cmake v3.6.3
tensorflow-1.0.03.5MSVC 2015 update 3Cmake v3.6.3

GPU

VersionPython versionCompilerBuild toolscuDNNCUDA
tensorflow_gpu-1.11.03.5-3.6MSVC 2015 update 3Bazel 0.15.079
tensorflow_gpu-1.10.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.9.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.8.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.7.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.6.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.5.03.5-3.6MSVC 2015 update 3Cmake v3.6.379
tensorflow_gpu-1.4.03.5-3.6MSVC 2015 update 3Cmake v3.6.368
tensorflow_gpu-1.3.03.5-3.6MSVC 2015 update 3Cmake v3.6.368
tensorflow_gpu-1.2.03.5-3.6MSVC 2015 update 3Cmake v3.6.35.18
tensorflow_gpu-1.1.03.5MSVC 2015 update 3Cmake v3.6.35.18
tensorflow_gpu-1.0.03.5MSVC 2015 update 3Cmake v3.6.35.18

 

Linux端:https://tensorflow.google.cn/install/source

Linux

VersionPython versionCompilerBuild tools
tensorflow-1.11.02.7, 3.3-3.6GCC 4.8Bazel 0.15.0
tensorflow-1.10.02.7, 3.3-3.6GCC 4.8Bazel 0.15.0
tensorflow-1.9.02.7, 3.3-3.6GCC 4.8Bazel 0.11.0
tensorflow-1.8.02.7, 3.3-3.6GCC 4.8Bazel 0.10.0
tensorflow-1.7.02.7, 3.3-3.6GCC 4.8Bazel 0.10.0
tensorflow-1.6.02.7, 3.3-3.6GCC 4.8Bazel 0.9.0
tensorflow-1.5.02.7, 3.3-3.6GCC 4.8Bazel 0.8.0
tensorflow-1.4.02.7, 3.3-3.6GCC 4.8Bazel 0.5.4
tensorflow-1.3.02.7, 3.3-3.6GCC 4.8Bazel 0.4.5
tensorflow-1.2.02.7, 3.3-3.6GCC 4.8Bazel 0.4.5
tensorflow-1.1.02.7, 3.3-3.6GCC 4.8Bazel 0.4.2
tensorflow-1.0.02.7, 3.3-3.6GCC 4.8Bazel 0.4.2
VersionPython versionCompilerBuild toolscuDNNCUDA
tensorflow_gpu-1.11.02.7, 3.3-3.6GCC 4.8Bazel 0.15.079
tensorflow_gpu-1.10.02.7, 3.3-3.6GCC 4.8Bazel 0.15.079
tensorflow_gpu-1.9.02.7, 3.3-3.6GCC 4.8Bazel 0.11.079
tensorflow_gpu-1.8.02.7, 3.3-3.6GCC 4.8Bazel 0.10.079
tensorflow_gpu-1.7.02.7, 3.3-3.6GCC 4.8Bazel 0.9.079
tensorflow_gpu-1.6.02.7, 3.3-3.6GCC 4.8Bazel 0.9.079
tensorflow_gpu-1.5.02.7, 3.3-3.6GCC 4.8Bazel 0.8.079
tensorflow_gpu-1.4.02.7, 3.3-3.6GCC 4.8Bazel 0.5.468
tensorflow_gpu-1.3.02.7, 3.3-3.6GCC 4.8Bazel 0.4.568
tensorflow_gpu-1.2.02.7, 3.3-3.6GCC 4.8Bazel 0.4.55.18
tensorflow_gpu-1.1.02.7, 3.3-3.6GCC 4.8Bazel 0.4.25.18
tensorflow_gpu-1.0.02.7, 3.3-3.6GCC 4.8Bazel 0.4.25.18

macOS

CPU

VersionPython versionCompilerBuild tools
tensorflow-1.11.02.7, 3.3-3.6Clang from xcodeBazel 0.15.0
tensorflow-1.10.02.7, 3.3-3.6Clang from xcodeBazel 0.15.0
tensorflow-1.9.02.7, 3.3-3.6Clang from xcodeBazel 0.11.0
tensorflow-1.8.02.7, 3.3-3.6Clang from xcodeBazel 0.10.1
tensorflow-1.7.02.7, 3.3-3.6Clang from xcodeBazel 0.10.1
tensorflow-1.6.02.7, 3.3-3.6Clang from xcodeBazel 0.8.1
tensorflow-1.5.02.7, 3.3-3.6Clang from xcodeBazel 0.8.1
tensorflow-1.4.02.7, 3.3-3.6Clang from xcodeBazel 0.5.4
tensorflow-1.3.02.7, 3.3-3.6Clang from xcodeBazel 0.4.5
tensorflow-1.2.02.7, 3.3-3.6Clang from xcodeBazel 0.4.5
tensorflow-1.1.02.7, 3.3-3.6Clang from xcodeBazel 0.4.2
tensorflow-1.0.02.7, 3.3-3.6Clang from xcodeBazel 0.4.2

GPU

VersionPython versionCompilerBuild toolscuDNNCUDA
tensorflow_gpu-1.1.02.7, 3.3-3.6Clang from xcodeBazel 0.4.25.18
tensorflow_gpu-1.0.02.7, 3.3-3.6Clang from xcodeBazel 0.4.25.18

请多多支持老卫的文章,点击左上角的关注,给老卫点个赞!
欢迎交流,互相学习

ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory这个错误通常是由于cuda库文件缺失或者版本不匹配导致的。 要解决这个问题,需要检查以下几个方面: 1. 首先,确认你的系统是否已经正确地安装了cuda。如果没有安装cuda,或者安装的版本与你使用的库文件不匹配,就会出现这个错误。因此,你需要安装正确版本的cuda。 2. 然后,检查libcublas.so.9.0这个库文件是否存在,并且是否在正确的路径下。你可以使用命令`find / -name "libcublas.so.9.0"`来查找该文件的位置。如果找不到这个文件,可能是因为cuda安装不完整或者库文件被错误地移动或删除了。这种情况下,你可以尝试重新安装cuda或者找到正确的库文件放置位置。 3. 另外,还需要检查你的环境变量是否正确设置了cuda库文件的路径。你可以通过添加以下代码来设置环境变量: ``` export LD_LIBRARY_PATH=/path/to/cuda/lib64:$LD_LIBRARY_PATH ``` 其中,/path/to/cuda是你cuda库文件的所在路径。 4. 最后,如果你已经安装了正确版本的cuda,并且库文件也存在并且路径设置正确,但是仍然出现这个错误,可能是因为其他原因导致的。你可以尝试重新编译你的代码,或者检查其他依赖项是否正确安装。 综上所述,要解决ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory的问题,你可以通过安装正确版本的cuda、检查库文件是否存在并设置正确的路径、检查环境变量设置以及重新编译代码等方法来解决。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [解决:ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory](https://blog.csdn.net/xiaolajiruirui/article/details/122353957)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory](https://blog.csdn.net/maizousidemao/article/details/107489730)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [导入tensorflow:ImportError: libcublas.so.9.0 报错](https://download.csdn.net/download/weixin_38522529/14858735)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值